docs/OneWayVignette.md

OneWay Vignette

This vignette analyzes data from a one-way between-subjects design.

Data Management

Data Entry

Factor <- c(rep(1,4),rep(2,4),rep(3,4))
Outcome <- c(0,0,3,5,4,7,4,9,9,6,4,9)
Factor <- factor(Factor,levels=c(1,2,3),labels=c("Level1","Level2","Level3"))
OneWayData <- data.frame(Factor,Outcome)

Descriptive Statistics

descMeans(Outcome~Factor)
## $`Descriptive Statistics for the Data`
##              N       M      SD
## Level1   4.000   2.000   2.449
## Level2   4.000   6.000   2.449
## Level3   4.000   7.000   2.449

Analyses of the Means

Confidence Intervals

ciMeans(Outcome~Factor)
## $`Confidence Intervals for the Means`
##              M      SE      df      LL      UL
## Level1   2.000   1.225   9.000  -0.771   4.771
## Level2   6.000   1.225   9.000   3.229   8.771
## Level3   7.000   1.225   9.000   4.229   9.771
graphMeans(Outcome~Factor)

ciMeans(Outcome~Factor,conf.level=.99)
## $`Confidence Intervals for the Means`
##              M      SE      df      LL      UL
## Level1   2.000   1.225   9.000  -1.980   5.980
## Level2   6.000   1.225   9.000   2.020   9.980
## Level3   7.000   1.225   9.000   3.020  10.980
graphMeans(Outcome~Factor,conf.level=.99,mu=5)

Significance Tests

nhstMeans(Outcome~Factor)
## $`Hypothesis Tests for the Means`
##           Diff      SE       t      df       p
## Level1   2.000   1.225   1.633   9.000   0.137
## Level2   6.000   1.225   4.899   9.000   0.001
## Level3   7.000   1.225   5.715   9.000   0.000
nhstMeans(Outcome~Factor,mu=5)
## $`Hypothesis Tests for the Means`
##           Diff      SE       t      df       p
## Level1  -3.000   1.225  -2.449   9.000   0.037
## Level2   1.000   1.225   0.816   9.000   0.435
## Level3   2.000   1.225   1.633   9.000   0.137

Analyses of a Mean Difference

Comparison=factor(Factor,c("Level1","Level2"))

Confidence Interval

ciDifference(Outcome~Comparison)
## $`Confidence Interval for the Mean Difference`
##               Diff      SE      df      LL      UL
## Comparison  -4.000   1.732   6.000  -8.238   0.238
graphDifference(Outcome~Comparison)

ciDifference(Outcome~Comparison,conf.level=.99)
## $`Confidence Interval for the Mean Difference`
##               Diff      SE      df      LL      UL
## Comparison  -4.000   1.732   6.000 -10.421   2.421
graphDifference(Outcome~Comparison,conf.level=.99)

Significance Test

nhstDifference(Outcome~Comparison)
## $`Hypothesis Tests for the Mean Difference`
##               Diff      SE       t      df       p
## Comparison  -4.000   1.732  -2.309   6.000   0.060
nhstDifference(Outcome~Comparison,mu=-2)
## $`Hypothesis Tests for the Mean Difference`
##               Diff      SE       t      df       p
## Comparison  -2.000   1.732  -1.155   6.000   0.292

Analyses of the Pairwise Comparisons

Confidence Intervals

ciPairwise(Outcome~Factor)
## $`Confidence Intervals for the Pairwise Comparisons`
##                    Diff      SE      df      LL      UL
## Level1 v Level2  -4.000   1.732   6.000  -8.238   0.238
## Level1 v Level3  -5.000   1.732   6.000  -9.238  -0.762
## Level2 v Level3  -1.000   1.732   6.000  -5.238   3.238
graphPairwise(Outcome~Factor)

ciPairwise(Outcome~Factor,conf.level=.99)
## $`Confidence Intervals for the Pairwise Comparisons`
##                    Diff      SE      df      LL      UL
## Level1 v Level2  -4.000   1.732   6.000 -10.421   2.421
## Level1 v Level3  -5.000   1.732   6.000 -11.421   1.421
## Level2 v Level3  -1.000   1.732   6.000  -7.421   5.421
graphPairwise(Outcome~Factor,mu=-2,conf.level=.99)

Significance Tests

nhstPairwise(Outcome~Factor)
## $`Hypothesis Tests for the Pairwise Comparisons`
##                    Diff      SE       t      df       p
## Level1 v Level2  -4.000   1.732  -2.309   6.000   0.060
## Level1 v Level3  -5.000   1.732  -2.887   6.000   0.028
## Level2 v Level3  -1.000   1.732  -0.577   6.000   0.585
nhstPairwise(Outcome~Factor,mu=-2)
## $`Hypothesis Tests for the Pairwise Comparisons`
##                    Diff      SE       t      df       p
## Level1 v Level2  -2.000   1.732  -1.155   6.000   0.292
## Level1 v Level3  -3.000   1.732  -1.732   6.000   0.134
## Level2 v Level3   1.000   1.732   0.577   6.000   0.585

Analyses of a Set of Contrasts

Confidence Intervals

ciContrasts(Outcome~Factor,contrasts=contr.sum)
## $`Confidence Intervals for the Contrasts`
##                 Est      SE      df      LL      UL
## (Intercept)   5.000   0.707   9.000   3.400   6.600
## x1           -3.000   1.000   9.000  -5.262  -0.738
## x2            1.000   1.000   9.000  -1.262   3.262
graphContrasts(Outcome~Factor,contrasts=contr.sum)

ciContrasts(Outcome~Factor,contrasts=contr.sum,conf.level=.99)
## $`Confidence Intervals for the Contrasts`
##                 Est      SE      df      LL      UL
## (Intercept)   5.000   0.707   9.000   2.702   7.298
## x1           -3.000   1.000   9.000  -6.250   0.250
## x2            1.000   1.000   9.000  -2.250   4.250
graphContrasts(Outcome~Factor,contrasts=contr.sum,conf.level=.99)

Significance Tests

nhstContrasts(Outcome~Factor,contrasts=contr.sum)
## $`Hypothesis Tests for the Contrasts`
##                 Est      SE       t      df       p
## (Intercept)   5.000   0.707   7.071   9.000   0.000
## x1           -3.000   1.000  -3.000   9.000   0.015
## x2            1.000   1.000   1.000   9.000   0.343

Analyses of the Effect

Source Table

descEffect(Outcome~Factor)
## $`Source Table for the Effect`
##                SS      df      MS
## Factor     56.000   2.000  28.000
## Residuals  54.000   9.000   6.000

Significance Test

nhstEffect(Outcome~Factor)
## $`Hypothesis Test for the Effect`
##                 F      df       p
## Factor      4.667   2.000   0.041
## Residuals      NA   9.000      NA

Effect Size

pvaEffect(Outcome~Factor)
## $`Proportion of Variance Accounted for by the Effect`
##             EtaSq ParEtaSq
## Factor      0.509    0.509
## Residuals   0.491       NA


cwendorf/easiOrigin documentation built on Nov. 1, 2023, 10:57 a.m.