This vignette analyzes data from a multiple-variable design.
Predictor1 <- c(0,0,3,5)
Predictor2 <- c(4,7,4,9)
Criterion <- c(9,6,4,9)
RegressionData <- data.frame(Predictor1,Predictor2,Criterion)
descMeans(RegressionData)
## $`Descriptive Statistics for the Data`
## N M SD
## Predictor1 4.000 2.000 2.449
## Predictor2 4.000 6.000 2.449
## Criterion 4.000 7.000 2.449
ciCoefficients(Criterion~Predictor1+Predictor2)
## $`Confidence Intervals for the Coefficients`
## Est SE df LL UL
## (Intercept) 4.481 5.868 1.000 -70.076 79.039
## Predictor1 -0.185 1.048 1.000 -13.496 13.125
## Predictor2 0.481 1.048 1.000 -12.829 13.792
graphCoefficients(Criterion~Predictor1+Predictor2)
ciCoefficients(Criterion~Predictor1+Predictor2,conf.level=.99)
## $`Confidence Intervals for the Coefficients`
## Est SE df LL UL
## (Intercept) 4.481 5.868 1.000 -369.042 378.005
## Predictor1 -0.185 1.048 1.000 -66.870 66.499
## Predictor2 0.481 1.048 1.000 -66.203 67.166
graphCoefficients(Criterion~Predictor1+Predictor2,conf.level=.99)
nhstCoefficients(Criterion~Predictor1+Predictor2)
## $`Hypothesis Tests for the Coefficients`
## Est SE t df p
## (Intercept) 4.481 5.868 0.764 1.000 0.585
## Predictor1 -0.185 1.048 -0.177 1.000 0.889
## Predictor2 0.481 1.048 0.460 1.000 0.726
descModel(Criterion~Predictor1+Predictor2)
## $`Source Table for the Model`
## SS df MS
## Model 3.185 2.000 1.593
## Residuals 14.815 1.000 14.815
nhstModel(Criterion~Predictor1+Predictor2)
## $`Hypothesis Test for the Model`
## F df1 df2 p
## Model 0.107 2.000 1.000 0.907
pvaModel(Criterion~Predictor1+Predictor2)
## $`Proportion of Variance Accounted for by the Model`
## R RSq AdjRSq
## Model 0.421 0.177 -1.469
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.