docs/RepeatedVignette.md

Repeated Vignette

This vignette analyzes data from a single-factor within-subjects design.

Data Management

Data Entry

Outcome1 <- c(0,0,3,5)
Outcome2 <- c(4,7,4,9)
Outcome3 <- c(9,6,4,9)
RepeatedData <- data.frame(Outcome1,Outcome2,Outcome3)

Descriptive Statistics

descMeans(RepeatedData)
## $`Descriptive Statistics for the Data`
##                N       M      SD
## Outcome1   4.000   2.000   2.449
## Outcome2   4.000   6.000   2.449
## Outcome3   4.000   7.000   2.449

Analyses of the Means

Confidence Intervals

ciMeans(RepeatedData)
## $`Confidence Intervals for the Means`
##                M      SE      df      LL      UL
## Outcome1   2.000   1.225   9.000  -0.771   4.771
## Outcome2   6.000   1.225   9.000   3.229   8.771
## Outcome3   7.000   1.225   9.000   4.229   9.771
graphMeans(RepeatedData)

ciMeans(RepeatedData,conf.level=.99)
## $`Confidence Intervals for the Means`
##                M      SE      df      LL      UL
## Outcome1   2.000   1.225   9.000  -1.980   5.980
## Outcome2   6.000   1.225   9.000   2.020   9.980
## Outcome3   7.000   1.225   9.000   3.020  10.980
graphMeans(RepeatedData,conf.level=.99,mu=5)

Significance Tests

nhstMeans(RepeatedData)
## $`Hypothesis Tests for the Means`
##             Diff      SE       t      df       p
## Outcome1   2.000   1.225   1.633   9.000   0.137
## Outcome2   6.000   1.225   4.899   9.000   0.001
## Outcome3   7.000   1.225   5.715   9.000   0.000
nhstMeans(RepeatedData,mu=5)
## $`Hypothesis Tests for the Means`
##             Diff      SE       t      df       p
## Outcome1  -3.000   1.225  -2.449   9.000   0.037
## Outcome2   1.000   1.225   0.816   9.000   0.435
## Outcome3   2.000   1.225   1.633   9.000   0.137

Analyses of a Mean Difference

ComparisonData <- data.frame(Outcome1,Outcome2)

Confidence Interval

ciDifference(ComparisonData)
## $`Confidence Interval for the Mean Difference`
##               Diff      SE      df      LL      UL
## Comparison  -4.000   1.225   3.000  -7.898  -0.102
graphDifference(ComparisonData)

ciDifference(ComparisonData,conf.level=.99)
## $`Confidence Interval for the Mean Difference`
##               Diff      SE      df      LL      UL
## Comparison  -4.000   1.225   3.000 -11.154   3.154
graphDifference(ComparisonData,conf.level=.99)

Significance Test

nhstDifference(ComparisonData)
## $`Hypothesis Tests for the Mean Difference`
##               Diff      SE       t      df       p
## Comparison  -4.000   1.225  -3.266   3.000   0.047
nhstDifference(ComparisonData,mu=-2)
## $`Hypothesis Tests for the Mean Difference`
##               Diff      SE       t      df       p
## Comparison  -2.000   1.225  -1.633   3.000   0.201

Analyses of the Pairwise Comparisons

Confidence Intervals

ciPairwise(RepeatedData)
## $`Confidence Intervals for the Pairwise Comparisons`
##                        Diff      SE      df      LL      UL
## Outcome1 v Outcome2  -4.000   1.225   3.000  -7.898  -0.102
## Outcome1 v Outcome3  -5.000   1.683   3.000 -10.357   0.357
## Outcome2 v Outcome3  -1.000   1.354   3.000  -5.309   3.309
graphPairwise(RepeatedData)

ciPairwise(RepeatedData,conf.level=.99)
## $`Confidence Intervals for the Pairwise Comparisons`
##                        Diff      SE      df      LL      UL
## Outcome1 v Outcome2  -4.000   1.225   3.000 -11.154   3.154
## Outcome1 v Outcome3  -5.000   1.683   3.000 -14.832   4.832
## Outcome2 v Outcome3  -1.000   1.354   3.000  -8.909   6.909
graphPairwise(RepeatedData,mu=-2,conf.level=.99)

Significance Tests

nhstPairwise(RepeatedData)
## $`Hypothesis Tests for the Pairwise Comparisons`
##                        Diff      SE       t      df       p
## Outcome1 v Outcome2  -4.000   1.225  -3.266   3.000   0.047
## Outcome1 v Outcome3  -5.000   1.683  -2.970   3.000   0.059
## Outcome2 v Outcome3  -1.000   1.354  -0.739   3.000   0.514
nhstPairwise(RepeatedData,mu=-2)
## $`Hypothesis Tests for the Pairwise Comparisons`
##                        Diff      SE       t      df       p
## Outcome1 v Outcome2  -2.000   1.225  -1.633   3.000   0.201
## Outcome1 v Outcome3  -3.000   1.683  -1.782   3.000   0.173
## Outcome2 v Outcome3   1.000   1.354   0.739   3.000   0.514

Analyses of a Set of Contrasts

Confidence Intervals

ciContrasts(RepeatedData,contrasts=contr.sum)
## $`Confidence Intervals for the Contrasts`
##                 Est      SE      df      LL      UL
## (Intercept)   5.000   0.585   6.000   3.568   6.432
## Factor1      -3.000   0.828   6.000  -5.025  -0.975
## Factor2       1.000   0.828   6.000  -1.025   3.025
graphContrasts(RepeatedData,contrasts=contr.sum)

ciContrasts(RepeatedData,contrasts=contr.sum,conf.level=.99)
## $`Confidence Intervals for the Contrasts`
##                 Est      SE      df      LL      UL
## (Intercept)   5.000   0.585   6.000   2.830   7.170
## Factor1      -3.000   0.828   6.000  -6.069   0.069
## Factor2       1.000   0.828   6.000  -2.069   4.069
graphContrasts(RepeatedData,contrasts=contr.sum,conf.level=.99)

Significance Tests

nhstContrasts(RepeatedData,contrasts=contr.sum)
## $`Hypothesis Tests for the Contrasts`
##                 Est      SE       t      df       p
## (Intercept)   5.000   0.585   8.542   6.000   0.000
## Factor1      -3.000   0.828  -3.624   6.000   0.011
## Factor2       1.000   0.828   1.208   6.000   0.272

Analyses of the Effect

Source Table

descEffect(RepeatedData)
## $`Source Table for the Effect`
##                SS      df      MS
## Factor     56.000   2.000  28.000
## Subjects   29.333   3.000   9.778
## Residuals  24.667   6.000   4.111

Significance Test

nhstEffect(RepeatedData)
## $`Hypothesis Test for the Effect`
##                 F      df       p
## Factor      6.811   2.000   0.029
## Subjects    2.378   3.000   0.169
## Residuals      NA   6.000      NA

Effect Size

pvaEffect(RepeatedData)
## $`Proportion of Variance Accounted for by the Effect`
##             EtaSq ParEtaSq
## Factor      0.509    0.694
## Subjects    0.267    0.543
## Residuals   0.224       NA


cwendorf/easiOrigin documentation built on Nov. 1, 2023, 10:57 a.m.