Description Usage Arguments Details Value Author(s) Examples
Metric and monotonic conjoint analysis for categorical factors
1 |
resp |
Response matrix where rows are profiles and columnes are responses from respondents. Small value for less preferable and large value for more preferable. |
profile |
Profile matrix where rows are profiles and columens are factors. |
monotone |
TRUE for Kruskal monotonic transformation. FALSE for metric scale. |
tor |
Tolerane for monotonic transformation. |
maxit |
Maximum number of itneractions for monotonic transformation. |
Metric conjoint analysis:
Linear regression model
Monotonic conjoint analysis:
Kruskal monotonic transformation is applied to each response column by opscale(level=2,...) in optiscale package.
Linear regression is applied to the transformed responses.
A conjanal object
lm |
lm object. Results of the linear regression models |
part |
part worth for each level of each factor of each respondent |
imp |
Relative importance of each factor for each respondent |
Chi-wai Kwan
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | library(conjanal)
contrasts(mydata$f1)
contrasts(mydata$f2)
contrasts(mydata$f3)
#define response matrix
resp<-as.matrix(mydata[,4:5])
#define profiles
profile<-mydata[,1:3]
fit.conj<-conjanal(resp=resp,profile=profile,monotone = TRUE)
summary(fit.conj$lm)
#part-worth
fit.conj$part
#relative importance
fit.conj$imp
#predicted utilities
cbind(profile,pred=predict(fit.conj$lm,newdata=profile))
#estimation of market shares
maxconj(fit.conj,csimp)
btlconj(fit.conj,csimp)
logitconj(fit.conj,csimp)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.