Prehos: Prediction of hospitalized, ICU and ventilated cases.

Description Usage Arguments Examples

View source: R/Prehos.R

Description

Prediction of hospitalized, ICU and ventilated cases based on SIR model.

Usage

1
2
3
Prehos(obj, inihos = 14, iniicu = 0, iniven = 0, hosrate = 2.5,
  icurate = 0.75, venrate = 0.5, outhosdays = 7, outicudays = 9,
  outvendays = 10, hms = 15)

Arguments

obj

Input. Object from function fitSIR.

inihos

Input. Initial number of hospitalized cases.

iniicu

Input. Initial number of ICU cases.

iniven

Input. Initial number of ventilated cases.

hosrate

Input. Hospitalization rate of infected people (percentage between 0 to 100).

icurate

Input. ICU rate of infected people (percentage between 0 to 100).

venrate

Input. Ventilated rate of infected people (percentage between 0 to 100).

outhosdays

Input. Hospital Length of Stay (days).

outicudays

Input. ICU Length of Stay (days).

outvendays

Input. Vent Length of Stay (days).

hms

Input. Hospital market share (percentage between 0 to 100).

Examples

1
2
3
4
5
6
7
## To predicte 100 days from today (dayFT=100).
casevolumne <- fitSIR(susceptible=4119405, Infected=3733, inihos=14,
     hosrate=2.5, hms=15, inidbt=4, mrt=14, sdis=30, dayFT=100)
hospitalization <- Prehos(casevolumne, inihos=14, iniicu=0, iniven=0,
     hosrate=2.5, icurate=0.75, venrate=0.5, outhosdays=7, outicudays=9,
     outvendays=10, hms=15)
head(hospitalization, 21) ## show the first 20 days

cyhsuTN/COVID19 documentation built on April 3, 2020, 4:19 a.m.