Chih-Yuan Hsu
Feb. 04, 2024
Hsu CY, Chang CJ, Liu Q, Shyr Y (2024). scKWARN: Kernel-weighted-average robust normalization for single-cell RNA-seq data. Bioinformatics. doi: 10.1093/bioinformatics/btae008.
Download scKWARN_1.1.2.tar.gz and locally install it, or execute the following code:
library(devtools)
install_github("cyhsuTN/scKWARN")
library(scKWARN)
set.seed(12345)
G <- 2000; n <- 600 # G: number of genes, n: number of cells
mu <- rgamma(G, shape = 2, rate = 2)
NB_cell <- function(j) rnbinom(G, size = 0.1, mu = mu)
countsimdata <- sapply(1:n, NB_cell)
colnames(countsimdata) <- paste("c", 1:n, sep = "_")
rownames(countsimdata) <- paste("g", 1:G, sep = "_")
Result <- LocASN(countmatrix = countsimdata)
#Result <- LocASN(countmatrix = as(countsimdata,"sparseMatrix"))
Result$NormalizedData[1:6,1:5]; Result$scalingFactor[1:6]
## 6 x 5 sparse Matrix of class "dgCMatrix"
## c_1 c_2 c_3 c_4 c_5
## g_1 . . . 3.065545 .
## g_2 . . . 2.043697 .
## g_3 . . . . .
## g_4 2.192714 1.989941 . . .
## g_5 . . 1.964309 . .
## g_6 . . . . 3.085495
## [1] 0.9121116 1.0050549 1.0181696 0.9786187 0.9722913 1.0133925
# log1p(Result$NormalizedData) for clustering
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.