rpca: Estimation of Approximate Factor Models

View source: R/rpca.R

rpcaR Documentation

Estimation of Approximate Factor Models

Description

rpca estimates the approximate factor models of the given matrix.

Usage

rpca(X, kmax, standardize = FALSE, tau = 0)

Arguments

X

a matrix of size T by N.

kmax

integer, indicating the maximum number of factors.

standardize

logical, indicating Whether or not X should be centered and scaled.

tau

numeric, specifying the parameter in the rank-regularized estimation. If tau = 0, then rank regularization is not used.

Value

a list of elements:

X
kmax
standardize
tau
ic2
pc2k
pc20
Fhat
Lamhat
Chat
Sigma
IC2
PC2k
PC20
fhat
lamhat
d
d0

Author(s)

Yankang (Bennie) Chen <yankang.chen@yale.edu>

Serena Ng <serena.ng@columbia.edu>

Jushan Bai <jushan.bai@columbia.edu>

References

Jushan Bai and Serena Ng (2002), Determining the number of factors in approximate factor models. https://doi.org/10.1111/1468-0262.00273

Jushan Bai and Serena Ng (2019), Rank regularized estimation of approximate factor models. https://doi.org/10.1016/j.jeconom.2019.04.021


cykbennie/fbi documentation built on Jan. 24, 2025, 5:59 p.m.