gradient_descent_OLS: gradient descent for ordinary least squares

Description Usage Arguments Examples

View source: R/gradient-descent.r

Description

This is a function to implement gradient descent for ordinary least squares. Gradient descent is an optimiization algorithm that minimizes functions.

Usage

1
2
3
4
5
6
7
8
9
gradient_descent_OLS(
  formula,
  data_frame,
  contrasts = NULL,
  lambda = 1e-04,
  tolerence = 1e-20,
  beta1 = 1,
  max_itr = 1e+06
)

Arguments

formula

a formula of linear model

data_frame

a data_frame

contrasts

Default is NULL. a list of constasts for factor variables

lambda

Default is 0.0001. The speed of gradient descent

tolerence

Default is 1e-20. The minimum difference between the old ssr and the update ssr.

beta1

Default is 1. The initial value of beta.

max_itr

Default is 1e6. The maximum number of iterations

Examples

1
2

cz354/bis557 documentation built on Dec. 20, 2020, 3:05 a.m.