README.md

tamMap - ggplot2 and tidy Swiss data centric suite

Suite of convenience functions for geospatial mapping of Swiss data. It integrates geographical data at different levels (municipality, cantons, ...), cities. It also incorporates various muncipality & cantons socio-econmic and voting indicators. Focus is on low levels functions for maximum flexibility

It relies on bleeding edge R packages, primarily sf and tidyverse.

Installation

It will probably never be on CRAN. To be installed from github:

# install.packages("devtools")
devtools::install_github("d-qn/taMap")

TODO

Clean up

Features

library(esri2sf)
url <- 'https://ge.ch/sitgags1/rest/services/VECTOR/SITG_OPENDATA_02/MapServer/6186'
df <- esri2sf(url)

Examples

Show the %foreigners vs % vote UDC by municipalities

```{r municipalities features} require(tidyverse) library(tamMap) communeData <- loadCommunesCHportraits() colnames(communeData)

Select only "surface" indicators

colIdx <- which(attr(communeData, "indicatorGroup") == "Surface") head(communeData[,colIdx])

Show the %foreigners vs % vote UDC

g1 <- ggplot(data = as.data.frame(communeData), aes(x = Etrangers en %, y = UDC)) + geom_point(aes(size = Habitants), alpha = 0.5) g1



### A long example to show a map with a zoom inlet map of Geneva

![](man/figures/README-inletMap-1.png)

```{r inletMap, echo = FALSE}
library(tamMap)
require(sf)
require(tidyverse)
require(rmapshaper)

shp_ch_paths_2018 <- shp_path(2018)
# loop and load the geo data in a named list
shp_ch_geodata <- shp_ch_paths_2018 %>% map(function(x) {
  layerName <- st_layers(x)
  st_read(x, layer = layerName$name, 
          options = "ENCODING=latin1", stringsAsFactors = F) %>% 
  select(ends_with("NR"), ends_with("NAME"))
})

# shift and scale up canton Geneva for the inlet map
geo_subset <- shp_ch_geodata$municipalities %>% filter(KTNR == 25)
inlet_geo <- shiftScale_geo(geo = geo_subset, scaleF = 4.4)
# Create circles sf to encompass the inlet map and its original location
geo_subset_coord <- encircle_coord(geo_subset)
inlet_coord <- encircle_coord(inlet_geo)
cone_sfc <- cone_geo(geo_subset_coord, inlet_coord)
circle_zoom_sfc <- encircle_geo(geo_subset_coord)
circle_inlet_sfc <- encircle_geo(inlet_coord)

# simplify muni geo, under 0.7 simplification and the lakes will look odd
shp_ch_geodata$municipalities <- 
  shp_ch_geodata$municipalities %>% ms_simplify(keep_shapes=T, keep = 0.75)

# plot
gp <- ggplot() +
  geom_sf(data = cone_sfc, fill = "lightgrey", lwd = 0, alpha = 0.2) +  
  geom_sf(data = circle_zoom_sfc, fill = "lightgrey", lwd = 0, alpha = 0.5) +
  geom_sf(data = circle_inlet_sfc, fill = "lightgrey", lwd = 0, alpha = 0.5) +
  geom_sf(data = shp_ch_geodata$municipalities, aes(fill = GMDNR), 
    lwd = 0.05, colour = "#0d0d0d") +
  #geom_sf(data = eauGe, fill = "blue") +
  geom_sf(data = inlet_geo, aes(fill = GMDNR), lwd = 0.1, colour = "#0d0d0d") +
  geom_sf(data = shp_ch_geodata$cantons, lwd = 0.15, colour = "#333333", fill = NA) +
  geom_sf(data = shp_ch_geodata$country, lwd = 0.25, colour = "#000d1a", fill = NA) +
  geom_sf(data = shp_ch_geodata$lakes  %>% 
            filter(SEENAME != "Lago di Como"), lwd = 0, fill = "#0066cc")

  gp + 
    theme_map() +
    scale_fill_viridis_c()  +
    coord_sf(datum = NA, expand = F)

```{r same but interactive, echo = F, eval = F} ## Same as above but interactive ! library(ggiraph) require(htmltools) # repalce quote signs

shp_ch_geodata$municipalities$GMDNAME <- gsub("'", "", shp_ch_geodata$municipalities$GMDNAME) inlet_geo$GMDNAME <- gsub("'", "", inlet_geo$GMDNAME)

gpi <- ggplot() + geom_sf(data = cone_sfc, fill = "lightgrey", lwd = 0, alpha = 0.2, colour = "transparent") + geom_sf(data = circle_zoom_sfc, fill = "lightgrey", lwd = 0, alpha = 0.5, colour = "transparent") + geom_sf(data = circle_inlet_sfc, fill = "lightgrey", lwd = 0, alpha = 0.5, colour = "transparent") + geom_sf_interactive( data = shp_ch_geodata$municipalities, aes(fill = GMDNR, tooltip = GMDNAME, data_id = GMDNAME), lwd = 0.05, colour = "#0d0d0d" ) + geom_sf_interactive( data = inlet_geo, aes(fill = GMDNR, tooltip = GMDNAME, data_id = GMDNAME), lwd = 0.1, colour = "#0d0d0d" ) + geom_sf(data = shp_ch_geodata$cantons, lwd = 0.15, colour = "#333333", fill = NA) + geom_sf(data = shp_ch_geodata$country, lwd = 0.25, colour = "#000d1a", fill = NA) + geom_sf(data = shp_ch_geodata$lakes %>% filter(SEENAME != "Lago di Como"), lwd = 0, fill = "#0066cc", colour = "transparent") gpi <- gpi + theme_map() + scale_fill_viridis_c() + coord_sf(datum = NA, expand = F)

ggiraph( ggobj = gpi, width = 1)

### Geneva map only with water bodies

![](man/figures/README-GenevaMapWater-1.png)

```{r GenevaMapWater, echo = F}
shp_ch_paths_2018 <- shp_path(2018)

# loop and load the geo data in a named list
shp_ch_geodata <- shp_ch_paths_2018[c('municipalities')] %>% 
  map(function(x) {
    layerName <- st_layers(x)
       st_read(x, layer = layerName$name, 
          options = "ENCODING=latin1", stringsAsFactors = F) %>% 
  select(ends_with("NR"), ends_with("NAME"))
})

gva <- shp_ch_geodata$municipalities %>% filter(KTNR == 25)

# get water bodies (river & lake)
library(esri2sf)
url <- 'https://ge.ch/sitgags1/rest/services/VECTOR/SITG_OPENDATA_02/MapServer/6186'
water <- esri2sf(url)

ggplot() + 
 geom_sf(
   data = gva,
   aes(fill = GMDNR), lwd = 0, colour = "#0d0d0d"
 ) + 
 geom_sf(
   data = water, lwd = 0.65, fill = "lightblue", 
   alpha = 1, colour = "lightblue"
 ) +
 theme_map() +
 coord_sf(datum = NA, expand = F)



d-qn/taMap documentation built on Jan. 29, 2020, 2:07 a.m.