library(learnr) library(gradethis) library(knitr) tutorial_options(exercise.timelimit = 5, exercise.checker = gradethis::grade_learnr) knitr::opts_chunk$set(echo = FALSE)
Run the following code that generates a set of points in 2-dimension space. You should see what appears to be a smaller circle inside a larger circle.
library(tidyverse) tt = seq(0,2*pi,len=50) tt2 = seq(0,2*pi,len=75) c1 = data.frame(x=cos(tt),y=sin(tt),grp=1) c2 = data.frame(x=1.5*cos(tt2),y=1.5*sin(tt2),grp=2) circles = bind_rows(c1,c2) n = nrow(circles) ggplot(circles,aes(x=x,y=y,color=as.factor(grp))) + geom_point() + theme_minimal(base_family = 'serif') + theme(legend.position = 'none')
The goal is to identify the inner points from the outer points. Let's perform K means with $K=2$. Plot your clusters.
library(tidyverse) tt = seq(0,2*pi,len=50) tt2 = seq(0,2*pi,len=75) c1 = data.frame(x=cos(tt),y=sin(tt),grp=1) c2 = data.frame(x=1.5*cos(tt2),y=1.5*sin(tt2),grp=2) circles = bind_rows(c1,c2) n = nrow(circles)
raw_kmeans = kmeans(circles[,1:2], 2, nstart = 10) circles$kmeans = raw_kmeans$cluster ggplot(circles,aes(x=x,y=y,color=as.factor(kmeans))) + geom_point() + theme_minimal(base_family = 'serif') + theme(legend.position = 'none')
How well did you do?
Use Laplacian Eigenmaps with Gaussian Kernel and $\gamma=0.01$. Use two eigenvectors. Plot the data in the new coordinate system and color by the original groups. (I believe you can use the last 2 eigenvectors here.)
library(tidyverse) tt = seq(0,2*pi,len=50) tt2 = seq(0,2*pi,len=75) c1 = data.frame(x=cos(tt),y=sin(tt),grp=1) c2 = data.frame(x=1.5*cos(tt2),y=1.5*sin(tt2),grp=2) circles = bind_rows(c1,c2) n = nrow(circles) raw_kmeans = kmeans(circles[,1:2], 2, nstart = 10) circles$kmeans = raw_kmeans$cluster
Delta = as.matrix(dist(as.matrix(scale(circles[,1:2])))) K = exp(-Delta^2/.01) L = diag(n) - diag(1/rowSums(K)) %*% K EE = eigen(L, symmetric = TRUE) KernCoords = EE$vectors[,124:125] %*% diag(EE$values[124:125]) LapEigenmaps = tibble(x=KernCoords[,1], y=KernCoords[,2],grp = circles$grp) ggplot(LapEigenmaps, aes(x=x,y=y,color=as.factor(grp))) + geom_point() + theme_minimal(base_family = 'serif') + theme(legend.position = 'none')
Now apply kmeans to the data in the new coordinate system.
library(tidyverse) tt = seq(0,2*pi,len=50) tt2 = seq(0,2*pi,len=75) c1 = data.frame(x=cos(tt),y=sin(tt),grp=1) c2 = data.frame(x=1.5*cos(tt2),y=1.5*sin(tt2),grp=2) circles = bind_rows(c1,c2) n = nrow(circles) raw_kmeans = kmeans(circles[,1:2], 2, nstart = 10) circles$kmeans = raw_kmeans$cluster Delta = as.matrix(dist(as.matrix(scale(circles[,1:2])))) K = exp(-Delta^2/.01) L = diag(n) - diag(1/rowSums(K)) %*% K EE = eigen(L, symmetric = TRUE) KernCoords = EE$vectors[,124:125] %*% diag(EE$values[124:125]) LapEigenmaps = tibble(x=KernCoords[,1], y=KernCoords[,2],grp = circles$grp)
circles$kern_kmeans = kmeans(KernCoords, 2, nstart = 10)$cluster ggplot(circles, aes(x=x,y=y,color=as.factor(kern_kmeans))) + geom_point() + theme_minimal(base_family = 'serif') + theme(legend.position = 'none')
How well did you do?
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.