msss_fit: Create R1 knots on a grid a specificed number of knots wide

Description Usage Arguments Value

View source: R/front_end.R

Description

Create R1 knots on a grid a specificed number of knots wide

Usage

1
2
3
4
msss_fit(locations, yy, knots_r1, spatial_dimension, maxiters = 100,
  cores = 1, design_mat = NULL, stopping_rule = "maxiter",
  g_method = 1, a_pi = 1, b_pi = 5, a_g = 3, kernel_width = 1.5,
  nu = 1, pi_method = 1, R1_prior = NULL, Kernel_type = "bezier")

Arguments

locations

locations of spatial observations.

yy

observation at each location

knots_r1

locations of R1 knots, equally spaced grid, output of r1_create

spatial_dimension

dimension of the locations, should be 1 or 2

maxiters

number of iterations, default is 100

cores

number of cores for parallel processing, ~20 is optimal

design_mat

fixed effects, at least an intercept is recommended

stopping_rule

'maxiter' is default, could be 'log likelihood' if you want it to exit early when finding no new models

g_method

1 for hyper g, 1 i sdefault

a_pi

parameter 1 for beta binomial sparsity if pi_method=1, or numerator if pi_method=2, 1 is default

b_pi

parameter 2 for beta binomial sparsity if pi_method=1, or denominator if pi_method=2, 5 is default

a_g

hyper g prior parameter, 3 is default, 2-4 recommended

kernel_width

bezier kernel width parameter, should be 1.5 or greater to be sensible, 1.5 is default

nu

bezier smoothness parameter, default is 1

pi_method

beta binomial is 1 (default), binomial (fixed pi) is 2

R1_prior

covariance matrix for R1 knots, default is NULL

Kernel_type

either bezier or wendland

Value

large list, exists to be processed by the function msss_predict forsummaries and predictions


daktx2/MSSS documentation built on May 24, 2020, 4:28 a.m.