knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%" )
A package containing several algorithms for finding REML estimates for covariances in the balanced $q$-dimensional half-sib design yijk = $\mu$ + $\alpha$i + $\beta$ij + $\epsilon$ijk, $1\leq i \leq I, 1\leq j \leq J, 1\leq k \leq K$, where $\alpha$i $\sim \mathcal{N}(0, A)$, $\beta$ij $\sim \mathcal{N}(0, B)$, $\epsilon$ijk $\sim \mathcal{N}(0, E)$.
You can install the development version of halfsibdesign from GitHub with:
# install.packages("devtools") devtools::install_github("damian-t-p/halfsibdesign")
Simulate a half-sib experiment with specified parameters:
set.seed(1) library(halfsibdesign) q <- 4 # number of traits I <- 100 # number of sires J <- 3 # number of dams K <- 5 # number of individuals per line mu <- 1:q sigma_a <- 5 sigma_b <- 3 sigma_e <- 1 A <- sigma_a^2 * diag(c(0, 0, 1, 1)) B <- sigma_b^2 * diag(q) E <- sigma_e^2 * diag(q) df <- rhalfsib(mu, A, I, B, J, E, K)
First, perform a MANOVA fit
manova_2way(df)
Notice that S3
, the within-sires estimate is not non-negative definite, se we
compute the correponding REML estimate.
stepreml_2way(df)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.