#' @title Softmax regression with gradient descent
#' @description Fits softmax regression using gradient descent, by maximizing log-likelihood
#' @param X the design matrix
#' @param y the response variable
#' @param lrate the learning rate
#' @param maxiter the maximum iteration number
#' @param tol the numerical tolerance
#' @export
softmaxreg <- function(X, y, lrate=0.01, maxiter=10000, tol=1e-5){
y <- onehot(y)
p <- ncol(X)
K <- ncol(y)
coefs <- matrix(rep(0, p*K), ncol=K, byrow=TRUE)
coefsOld <- coefs
coefErr <- 1
counter <- 0
while(coefErr > tol && counter < maxiter)
{
tmp <- lrate*matrix(t(X) %*% (y-softmax(X%*%coefsOld)), ncol=K)/nrow(X)
coefs <- coefsOld + tmp
coefErr <- norm(coefs - coefsOld)
coefsOld <- coefs
counter <- counter + 1
}
coefs
}
softmax <- function(z) {
tmp <- exp(z)
tmp/colSums(tmp)
}
onehot <- function(Y){
n_col <- length(unique(Y))
n_row <- length(Y)
Y_enc <- matrix(rep(0, n_col*n_row), ncol = n_col, byrow=TRUE)
for (i in 1:n_row) {
Y_enc[i, Y[i]] <- 1
}
Y_enc
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.