In this section we collect some function to help the fat bloom analysis
mosaicFB: draw a mosaic plot of fat bloom vs month vs 'cluster' field
mosaicFB(dati, cluster='plant', filter=NULL, depivot=T, main='Affioramento prodotto', sub='')
stackFB:
stackFB(data, main='Titolo', new=c('mese', 'prodotto'), tabOnGraph=T)
depivot:
depivot(dati)
where:
dati : analysis data frame (see below) cluster : the field use to clusterize the data 'plant' filter : filter to apply at data frame NULL es.1 filter="plant=='Alba'" es.2 filter="plant=='Alba' & line %in% c('L1','L4')" depivot : T = data need to be 'depivot' T main : graph title 'Products fat-bloom' sub : subtitle (printed below x axis) '' new : 'mese' plot montly data, 'prodotto' plot data for each product 'mese' tabOnGraph : T = plot results on graph T
The analysis data file for the function stackFB()
, must contain the following field:
prodotto : identification of the product mese : month of analysis L1-L6 : number of sample for each levels of fat bloom
as the following example 'RO_OHG':
library(tecTools) data('RO_OHG') knitr::kable(head(RO_OHG))
The analysis data file for the function mosaicFB
(with option depivot=T), must contain the following field:
plant : test label (used in the legend) mese : month of analysis line : line of production L1-L6 : number of sample for each levels of fat bloom
as the following example 'RO_ALL':
library(tecTools) data('RO_ALL') knitr::kable(head(RO_ALL[, c(1,6,8,9:14)]))
The analysis data file the function mosaicFB
(already depivoted), must contain the following field:
plant : test label (used in the legend) mese : month of analysis line : line of production affioramento : level of fat bloom (from 1 to 6) of the praline
as the following example 'RO_ALL_DE':
library(tecTools) data('RO_ALL_DE') knitr::kable(head(RO_ALL_DE[, c(1,6,8,9)]))
These data are calculated as:
RO_ALL_DE <- depivot(RO_ALL)
Compare fat-bloom of different plant (defaults options)
library(tecTools) data('RO_ALL') mosaicFB(RO_ALL) # the some graph could be print with mosaicFB(RO_ALL_DE, depivot=F)
Is possible to change cluster field and use filter to subsetting data
library(tecTools) data('RO_ALL_DE') mosaicFB(RO_ALL, cluster='line', filter="plant=='Alba' & line %in% c('L1','L4')")
Is possible to clusterize the data using all fields available
library(tecTools) data('RO_OHG') mosaicFB(RO_OHG, cluster='product')
Is possible to clusterize using interaction of more fields
library(tecTools) data('RO_ALL') mosaicFB(RO_ALL, cluster='plant+line')
In the following graph we could compare the melting point of three differnt chocolate:
library(tecTools) data('RO_OHG') #stackFB(RO_OHG)
library(tecTools) data('RO_OHG') #stackFB(RO_OHG, tabOnGraph=F)
with graph for products
library(tecTools) data('RO_OHG') #stackFB(RO_OHG, new='product')
Immagini della scala dei livelli di affioramento
knitr::include_graphics("Affioramento.png")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.