GAT | R Documentation |
Probablity density function(PDF), Cumulative distribution function(CDF), Quantile function and Random generation of the GAT distribution
dgat(x, mu, scale, alpha, r, c, nu, pars = NULL)
pgat(q, mu, scale, alpha, r, c, nu, pars = NULL)
qgat(p, mu, scale, alpha, r, c, nu, pars = NULL)
rgat(n, mu, scale, alpha, r, c, nu, pars = NULL)
x , q |
vector of quantiles |
mu |
location parameter |
scale |
scale parameter, |
alpha |
how early tail behavior is apparent, |
r |
tail power asymmetry, |
c |
scale asymmetry, |
nu |
degrees of freedom / tail parameter, |
pars |
a vector that contains mu, scale, alpha, r, c, nu, if pars is specified, mu, scale, alpha, r, c, nu should not be specified |
p |
vector of probablilities |
n |
number of observations for random generation |
dgat
gives the density, pgat
gives the distribution function, qgat
gives the quantile function, and rgat
generates random samples for GATdistribution.
Baker, R. D. (2016). A new asymmetric generalisation of the t-distribution. arXiv preprint arXiv:1606.05203. \Sexpr[results=rd]{tools:::Rd_expr_doi("https://doi.org/10.48550/arXiv.1606.05203")}
dgat(0, 0.12, 0.6, 1.5, 1.2, 2, 5)
pgat(0.12, 0.12, 0.6, 1.5, 1.2, 2, 5)
qgat(0.4, 0.12, 0.6, 1.5, 1.2, 2, 5)
data = rgat(1000, 0.12, 0.6, 1.5, 1.2, 2, 5)
hist(data, breaks = 50, probability = TRUE)
# using the 'pars' argument
pars <- c(0.12, 0.6, 1.5, 1.2, 2, 5)
x <- seq(-3, 3, 0.01)
y <- dgat(x, pars = pars)
lines(x, y, col = 4)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.