#' @description
#' MOC (Dandl et. al 2020) solves a multi-objective optimization problem to find counterfactuals. The four objectives
#' to minimize are:
#' \enumerate{
#' \item {`dist_target`: Distance to `desired_prob` (classification tasks) or `desired_prob` (regression tasks).}
#' \item {`dist_x_interest`: Dissimilarity to `x_interest` measured by Gower's dissimilarity measure (Gower 1971).}
#' \item {`no_changed`: Number of feature changes.}
#' \item {`dist_train`: (Weighted) sum of dissimilarities to the `k` nearest data points in `predictor$data$X`.}
#' }
#'
#' For optimization, it uses the NSGA II algorithm (Deb et. al 2002) with mixed integer evolutionary
#' strategies (Li et al. 2013) and some tailored adjustments for the counterfactual search (Dandl et al. 2020).
#' Default values for the hyperparameters are based on Dandl et al. 2020.
#'
#' @details
#'
#' Several population initialization strategies are available:
#' \enumerate{
#' \item {`random`: Feature values of new individuals are sampled from the feature value ranges in `predictor$data$X`.
#' Some features values are randomly reset to their initial value in `x_interest`.}
#' \item {`sd`: Like `random`, except that the sample ranges of numerical features are limited to one standard
#' deviation from their initial value in `x_interest`.}
#' \item {`icecurve`: As in `random`, feature values are sampled from the feature value ranges in `predictor$data$X`.
#' Then, however, features are reset with probabilities relative to their importance: the higher the importance
#' of a feature, the higher the probability that its values differ from its value in `x_interest`.
#' The feature importance is measured using ICE curves (Goldstein et al. 2015).}
#' \item {`traindata`: Contrary to the other strategies, feature values are drawn from (non-dominated) data points
#' in `predictor$data$X`; if not enough non-dominated data points are available, remaining individuals
#' are initialized by random sampling. Subsequently, some features values are randomly reset to their initial value
#' in `x_interest` (as for `random`).}
#' }
#'
#' If `use_conditional_mutator` is set to TRUE, a conditional mutator samples
#' feature values from the conditional distribution given the other feature values
#' with the help of transformation trees (Hothorn and Zeileis 2017).
#' For details see Dandl et al. 2020.
#'
#' @references
#'
#' Dandl, S., Molnar, C., Binder, M., and Bischl, B. (2020).
#' "Multi-Objective Counterfactual Explanations". In: Parallel Problem
#' Solving from Nature – PPSN XVI, edited by Thomas Bäck, Mike Preuss,
#' André Deutz, Hao Wang, Carola Doerr, Michael Emmerich, and Heike Trautmann, 448–469,
#' Cham, Springer International Publishing, \doi{10.1007/978-3-030-58112-1_31}.
#'
#' Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002).
#' "A fast and elitist multiobjective genetic algorithm: NSGA-II".
#' IEEE transactions on evolutionary computation, 6(2), 182-197.
#'
#' Goldstein, A., Kapelner, A., Bleich, J., and Pitkin, E. (2015).
#' "Peeking Inside the Black Box: Visualizing
#' Statistical Learning with Plots of Individual Conditional Expectation".
#' Journal of Computational and Graphical Statistics 24 (1): 44–65.
#' \doi{10.1080/10618600.2014.907095}.
#'
#' Gower, J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics, 27, 623–637.
#'
#' Hothorn, T., Zeileis, A. (2017), "Transformation Forests".
#' Technical Report, \href{https://arxiv.org/abs/1701.02110}{arXiv 1701.02110}.
#'
#' Li, Rui, L., Emmerich, M. T. M., Eggermont, J. Bäck, T., Schütz, M., Dijkstra, J., Reiber, J. H. C. (2013).
#' "Mixed Integer Evolution Strategies for Parameter Optimization."
#' Evolutionary Computation 21 (1): 29–64. \doi{10.1162/EVCO_a_00059}.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.