#' @description
#'
#' RandomSearch randomly samples a population of candidates and returns non-dominated candidates w.r.t to the objectives
#' of MOC (Dandl et. al 2020) as counterfactuals. RandomSearch is equivalent to MOC with zero generations and the `random`
#' initialization strategy.
#'
#'
#' The four objectives of MOC (Dandl et. al 2020) to are:
#' \enumerate{
#' \item {Distance to `desired_prob` (classification tasks) or `desired_prob` (regression tasks).}
#' \item {Dissimilarity to `x_interest` measured by Gower's dissimilarity measure (Gower 1971).}
#' \item {Number of feature changes.}
#' \item {(Weighted) sum of dissimilarities to the `k` nearest data points in `predictor$data$X`.}
#' }
#'
#'
#' @details
#'
#' RandomSearch is typically used as a baseline in benchmark comparisons with MOC.
#' The total number of samples drawn is `mu` * `n_generations`. Using separate parameters `mu` and `n_generations`
#' is only required to make certain statistics comparable with MOC (e.g. the evolution of the dominated hypervolume).
#'
#'
#' @references
#' Dandl, S., Molnar, C., Binder, M., and Bischl, B. (2020).
#' "Multi-Objective Counterfactual Explanations". In: Parallel Problem
#' Solving from Nature – PPSN XVI, edited by Thomas Bäck, Mike Preuss,
#' André Deutz, Hao Wang, Carola Doerr, Michael Emmerich, and Heike Trautmann, 448–469,
#' Cham, Springer International Publishing, \doi{10.1007/978-3-030-58112-1_31}.
#'
#' Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002).
#' "A fast and elitist multiobjective genetic algorithm: NSGA-II".
#' IEEE transactions on evolutionary computation, 6(2), 182-197.
#'
#' Goldstein, A., Kapelner, A., Bleich, J., and Pitkin, E. (2015).
#' "Peeking Inside the Black Box: Visualizing
#' Statistical Learning with Plots of Individual Conditional Expectation".
#' Journal of Computational and Graphical Statistics 24 (1): 44–65.
#' \doi{10.1080/10618600.2014.907095}.
#'
#' Gower, J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics, 27, 623–637.
#'
#' Li, Rui, L., Emmerich, M. T. M., Eggermont, J. Bäck, T., Schütz, M., Dijkstra, J., Reiber, J. H. C. (2013).
#' "Mixed Integer Evolution Strategies for Parameter Optimization."
#' Evolutionary Computation 21 (1): 29–64. \doi{10.1162/EVCO_a_00059}.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.