# devtools::install_github(repo = "danichusfu/RouteIdentification") # # library(RouteIdentification) # library(tidyverse) # # cluster_controls <- generate_random_cluster_controls(number_of_clusters = 3) # # nested_trajectory_data <- # generate_sample_data(cluster_controls, number_of_curves = 20) %>% # select(curve_i, x, y, cluster = cluster_num) # # # em_results <- # nested_trajectory_data %>% # unnest(cols = c(x, y)) %>% # cluster_trajectory_data(K = 3) # # # cluster_means <- # extract_cluster_means(em_results) # # nested_trajectory_data %>% # bind_cols(as_tibble(em_results$Pik)) %>% # mutate(curve_i = row_number()) %>% # pivot_longer(names_to = "pred_cluster", values_to = "prob", matches("\\d")) %>% # mutate(pred_cluster = parse_number(pred_cluster)) %>% # group_by(curve_i) %>% # filter(prob == max(prob)) %>% # ungroup() %>% # count(cluster, pred_cluster) # # nested_trajectory_data %>% # bind_cols(as_tibble(em_results$Pik)) %>% # mutate(curve_i = row_number()) %>% # pivot_longer(names_to = "pred_cluster", values_to = "prob", matches("\\d")) %>% # mutate(pred_cluster = parse_number(pred_cluster)) %>% # group_by(curve_i) %>% # filter(prob == max(prob)) %>% # unnest(cols = c(x, y)) %>% # ggplot(aes(x = x, y = y, group = curve_i, colour = factor(cluster))) + # geom_path() + # facet_wrap(~ pred_cluster) # # # ggplot(cluster_means, aes(x = V1, y = V2, colour = factor(cluster))) + # geom_path()+ # facet_wrap(~ cluster) # # new_nested_trajectory_data <- # generate_sample_data(cluster_controls) %>% # select(curve_i, x, y, cluster = cluster_num) # # # new_trajectory_data <- new_nested_trajectory_data %>% unnest(cols = c(x, y)) # # new_data_fit <- fit_new_data(new_trajectory_data, em_results) # # new_data_fit %>% # count(cluster, cluster_assigned)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.