knitr::opts_chunk$set( collapse = TRUE, comment = NA, echo = TRUE, warning = FALSE, message = FALSE, error = TRUE, cache = FALSE, fig.width = 10, fig.height = 10, fig.path = "figures/", out.width = "100%" )
cat('Date-time: ', Sys.time()) ## Load libraries library(covid19) library(ggplot2) library(lubridate) library(dplyr) library(readr) options(scipen = '999')
# "Congo, Dem. Rep." "Congo, Rep." "Egypt, Arab Rep." "Gambia, The" pd <- df_country %>% ungroup %>% mutate(country = ifelse(country == 'Congo (Kinshasa)', 'Congo, Dem. Rep.', ifelse(country == 'Congro (Brazzaville)', 'Congro, Rep.', ifelse(country == 'Egypt', 'Egypt, Arab Rep.', ifelse(country == 'Gambia', 'Gambia, The', country))))) pd <- pd %>% left_join(world_pop) %>% filter(region %in% c('Africa')) %>% # filter(region %in% c('Asia') & # country != 'China') %>% # filter(sub_region %in% 'Latin America and the Caribbean') %>% filter(cases > 0) %>% group_by(date) %>% summarise(cases = sum(cases), deaths = sum(deaths), countries = length(unique(country))) pd %>% tail length(unique(world_pop$country[world_pop$region == 'Africa']))
pd <- df_country %>% ungroup %>% mutate(country = ifelse(country == 'Congo (Kinshasa)', 'Congo, Dem. Rep.', ifelse(country == 'Congro (Brazzaville)', 'Congro, Rep.', ifelse(country == 'Egypt', 'Egypt, Arab Rep.', ifelse(country == 'Gambia', 'Gambia, The', country))))) pd <- pd %>% left_join(world_pop) %>% filter(region %in% c('Africa')) %>% # filter(region %in% c('Asia') & # country != 'China') %>% # filter(sub_region %in% 'Latin America and the Caribbean') %>% filter(cases > 0) %>% filter(date == '2020-04-21') %>% arrange(desc(cases)) # Keep only the top 30 cases pd <- pd[1:30,] pd %>% ungroup %>% summarise(cases = sum(cases), deaths = sum(deaths), countries = length(unique(country)))
pd <- df_country pd <- pd %>% left_join(world_pop) %>% filter(region %in% c('Oceania')) %>% # filter(region %in% c('Asia') & # country != 'China') %>% # filter(sub_region %in% 'Latin America and the Caribbean') %>% filter(cases > 0) %>% filter(date == '2020-04-21') %>% # 1!!! arrange(desc(cases)) pd %>% group_by(country) %>% summarise(cases = sum(cases), deaths = sum(deaths), countries = length(unique(country)))
South Africa: 5% hospitalization rate: https://sacoronavirus.co.za/2020/05/08/update-on-covid-19-8th-may-2020/
US: <1% https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.