# Basic knitr options
library(knitr)
opts_chunk$set(comment = NA, 
               # echo = FALSE, 
               warning = FALSE, 
               message = FALSE, 
               error = TRUE, 
               cache = FALSE,
               fig.width = 9.64,
               fig.height = 7.86,
               fig.path = 'figures/')
## Load libraries
library(covid19)
library(ggplot2)
library(lubridate)
library(dplyr)
library(ggplot2)
library(sp)
library(raster)
library(viridis)
library(ggthemes)
library(sf)
library(rnaturalearth)
library(rnaturalearthdata)
library(RColorBrewer)
library(readr)
options(scipen = '999')

Charts for Tot es Mou

dir.create('~/Desktop/totesmou')
plot_day_zero(countries = c('Spain', 'Italy'),
              point_size = 2, calendar = T)
ggsave('~/Desktop/totesmou/1_italy_vs_spain.png',
       height = 5.6,
       width = 9.6)
plot_day_zero(countries = c('Spain', 'Italy'),
              point_size = 2, calendar = F)
ggsave('~/Desktop/totesmou/2_italy_vs_spain_temps_ajustat.png',
       height = 5.6,
       width = 9.6)
plot_day_zero(countries = c('Spain', 'Italy'),
              point_size = 2, calendar = T, deaths = T, day0 = 10)
ggsave('~/Desktop/totesmou/3_italy_vs_spain_morts.png',
       height = 5.6,
       width = 9.6)
plot_day_zero(countries = c('Spain', 'Italy'),
              point_size = 2, calendar = F, deaths = T, day0 = 10)
ggsave('~/Desktop/totesmou/4_italy_vs_spain_morts_temps_ajustat.png',
       height = 5.6,
       width = 9.6)
plot_day_zero(countries = c('Spain', 'Italy'),
              point_size = 2, calendar = F, deaths = T, day0 = 10, pop = T)
ggsave('~/Desktop/totesmou/5_italy_vs_spain_morts_temps_ajustat_poblacio.png',
       height = 5.6,
       width = 9.6)
plot_day_zero(countries = c('Spain', 'Italy'),
              point_size = 2, calendar = F, deaths = T, day0 = 1, pop = T, roll = 7, roll_fun = 'mean')
ggsave('~/Desktop/totesmou/6_italy_vs_spain_morts_diarias_rolling_7_day_avg_temps_ajustat_poblacio.png',
       height = 5.6,
       width = 9.6)
plot_day_zero(countries = c('Spain', 'Italy'),
              districts = c('Cataluña', 'Madrid',
                            'Lombardia', 'Emilia-Romagna'),
              by_district = T,
              day0 = 10,
              pop = T)
ggsave('~/Desktop/totesmou/7_ccaa_casos_ajustat_poblacio.png',
       height = 5.6,
       width = 9.6)
plot_day_zero(countries = c('Spain', 'Italy'),
              districts = c('Cataluña', 'Madrid',
                            'Lombardia', 'Emilia-Romagna'),
              by_district = T,
              deaths = T,
              day0 = 1,
              pop = T)
ggsave('~/Desktop/totesmou/8_ccaa_morts_ajustat_poblacio.png',
       height = 5.6,
       width = 9.6)
plot_day_zero(countries = c('Spain', 'Italy'),
              districts = c('Cataluña', 'Madrid',
                            'Lombardia', 'Emilia-Romagna'),
              by_district = T,
              deaths = T,
              roll = 7,
              roll_fun = 'mean',
              day0 = 1,
              pop = T)
ggsave('~/Desktop/totesmou/9_ccaa_morts_ajustat_poblacio.png',
       height = 5.6,
       width = 9.6)
plot_day_zero(countries = c('Spain', 'Italy', 'US'),
              districts = c('Cataluña', 'Madrid', 
                            'New York', 
                            'Lombardia', 'Emilia-Romagna'),
              by_district = T,
              deaths = T,
              # roll = 7,
              roll_fun = 'mean',
              day0 = 1,
              pop = T)
ggsave('~/Desktop/totesmou/10_usa_comparison.png',
       height = 5.6,
       width = 9.6)
plot_day_zero(countries = c('Spain', 'Italy', 'US'),
              districts = c('Cataluña', 'Madrid', 
                            'New York', 
                            'Lombardia', 'Emilia-Romagna'),
              by_district = T,
              deaths = T,
              # roll = 7,
              roll_fun = 'mean',
              day0 = 1,
              pop = F)
ggsave('~/Desktop/totesmou/11_usa_comparison_no_ajust_pop.png',
       height = 5.6,
       width = 9.6)
plot_day_zero(color_var = 'iso', by_district = T,
              deaths = T,
              day0 = 1,
              alpha = 0.6,
              point_alpha = 0.6,
              countries = c('Spain', 'Italy'),
              pop = T)
ggsave('~/Desktop/totesmou/12_ita_us_ccaa_comparison.png',
       height = 5.6,
       width = 9.6)
place_transform <- function(x){ifelse(x == 'Madrid', 'Madrid',
                                      # ifelse(x == 'Cataluña', 'Cataluña',
                                             'Altres CCAA')
  # )
}
place_transform_ita <- function(x){
  ifelse(x == 'Lombardia', 'Lombardia', 
         # ifelse(x == 'Emilia Romagna', 'Emilia Romagna', 
                'Altres regions italianes')
  # )
}
pd <- esp_df %>% mutate(country = 'Espanya') %>%
  mutate(ccaa = place_transform(ccaa)) %>%
  bind_rows(ita %>% mutate(ccaa = place_transform_ita(ccaa),
                           country = 'Itàlia')) %>%
  group_by(country, ccaa, date) %>% 
  summarise(cases = sum(cases),
            uci = sum(uci),
            deaths = sum(deaths),
            cases_non_cum = sum(cases_non_cum),
            deaths_non_cum = sum(deaths_non_cum),
            uci_non_cum = sum(uci_non_cum)) %>%
  left_join(esp_pop %>%
              mutate(ccaa = place_transform(ccaa)) %>%
              bind_rows(ita_pop %>% mutate(ccaa = place_transform_ita(ccaa))) %>%
              group_by(ccaa) %>%
              summarise(pop = sum(pop))) %>%
  mutate(deaths_non_cum_p = deaths_non_cum / pop * 1000000) %>%
  group_by(country, date) %>%
  mutate(p_deaths_non_cum_country = deaths_non_cum / sum(deaths_non_cum) * 100,
         p_deaths_country = deaths / sum(deaths) * 100)
pd$ccaa <- factor(pd$ccaa,
                  levels = c('Madrid',
                             # 'Cataluña',
                             'Altres CCAA',
                             'Lombardia',
                             # 'Emilia Romagna',
                             'Altres regions italianes'))
cols <- c(
  rev(brewer.pal(n = 3, 'Reds'))[1:2],
  rev(brewer.pal(n = 3, 'Blues'))[1:2]
)

label_data <- pd %>%
  filter(country  %in% c('Itàlia', 'Espanya')) %>%
  group_by(country) %>%
  filter(date == max(date))  %>%
  mutate(label = gsub('\nitalianas', '',  gsub(' ', '\n', ccaa))) %>%
  mutate(x = date - 2,
         y = p_deaths_country + 
           ifelse(p_deaths_country > 50, 10, -9))
ggplot(data = pd %>% group_by(country) %>% mutate(start_day = dplyr::first(date[deaths >=50])) %>% filter(date >= start_day),
       aes(x = date,
           y = p_deaths_country,
           color = ccaa,
           group = ccaa)) +
  # geom_bar(stat = 'identity',
  #          position = position_dodge(width = 0.99)) +
  scale_fill_manual(name = '', values = cols) +
  scale_color_manual(name = '', values = cols) +
  geom_line(size = 2,
            aes(color = ccaa)) +
  geom_point(size = 3,
             aes(color = ccaa)) +
  facet_wrap(~country, scales = 'free_x') +
  # xlim(as.Date('2020-03-09'),
  #      Sys.Date()-1) +
  theme_simple() +
  geom_hline(yintercept = 50, lty = 2, alpha = 0.6) +
  # geom_line(lty = 2, alpha = 0.6) +
  labs(x = 'Data',
       y = 'Percentatge de morts',
       title = 'Percentatge de morts de la regió més afectada vs resta del pais',
       subtitle = 'A partir del primer día a cada país amb 50 o més morts') +
  theme(legend.position = 'top',
        strip.text = element_text(size = 30),
        legend.text = element_text(size = 10))  +
  guides(color = guide_legend(nrow = 2,
                              keywidth = 5)) +
  geom_text(data = label_data,
            aes(x = x-1,
                y = y,
                label = label,
                color = ccaa),
            size = 7,
            show.legend = FALSE)
ggsave('~/Desktop/totesmou/13_madrid_lombardia_percent.png',
       height = 5.6,
       width = 9.6)
roll_curve <- function(data,
                       n = 4,
                       deaths = FALSE,
                       scales = 'fixed',
                       nrow = NULL,
                       ncol = NULL,
                       pop = FALSE){

  # Create the n day rolling avg
  ma <- function(x, n = 5){

    if(length(x) >= n){
      stats::filter(x, rep(1 / n, n), sides = 1)
    } else {
      new_n <- length(x)
      stats::filter(x, rep(1 / new_n, new_n), sides = 1)
    }


  }

  pd <- data
  if(deaths){
    pd$var <- pd$deaths_non_cum
  } else {
    pd$var <- pd$cases_non_cum
  }

  if('ccaa' %in% names(pd)){
    pd$geo <- pd$ccaa
  } else {
    pd$geo <- pd$iso
  }

  if(pop){
    # try to get population
    if(any(pd$geo %in% unique(esp_df$ccaa))){
      right <- esp_pop
      right_var <- 'ccaa'
    } else {
      right <- world_pop
      right_var <- 'iso'
    }
    pd <- pd %>% left_join(right %>% dplyr::select(all_of(right_var), pop),
                           by = c('geo' = right_var)) %>%
      mutate(var = var / pop * 100000)
  }

  pd <- pd %>%
    arrange(date) %>%
    group_by(geo) %>%
    mutate(with_lag = ma(var, n = n))


  ggplot() +
    geom_bar(data = pd,
         aes(x = date,
             y = var),
             stat = 'identity',
         fill = 'grey',
         alpha = 0.8) +
    geom_area(data = pd,
              aes(x = date,
                  y = with_lag),
              color = 'red',
              fill = 'red',
              alpha = 0.6) +
    facet_wrap(~geo, scales = scales, nrow = nrow, ncol = ncol) +
    theme_simple() +
    labs(x = '',
         y = ifelse(deaths, 'Deaths', 'Cases'),
         title = paste0('Daily (non-cumulative) ', ifelse(deaths, 'deaths', 'cases'),
                        ifelse(pop, ' (per 100,000)', '')),
         subtitle = paste0('Data as of ', max(data$date),
                           '.\nRed line = ', n, ' day rolling average. Grey bar = day-specific value.')) +
    theme(axis.text.x = element_text(size = 7,
                                     angle = 90,
                                     hjust = 0.5, vjust = 1)) #+
    # scale_x_date(name ='',
    #              breaks = sort(unique(pd$date)),
    #              labels = format(sort(unique(pd$date)), '%b %d'))
    # scale_y_log10()
}
this_ccaa <- 'Cataluña'
plot_data <- esp_df %>% mutate(geo = ccaa) %>% filter(ccaa == this_ccaa)
roll_curve(plot_data, scales = 'fixed')  + theme(strip.text = element_text(size = 30))
ggsave('~/Desktop/totesmou/14_catalunya_corba_epidemica_casos.png',
       height = 5.6,
       width = 9.6)

plot_data <- esp_df %>% mutate(geo = ccaa) %>% filter(ccaa == this_ccaa)
roll_curve(plot_data, deaths = T, scales = 'fixed') + theme(strip.text = element_text(size = 30))
ggsave('~/Desktop/totesmou/15_catalunya_corba_epidemica_morts.png',
       height = 5.6,
       width = 9.6)

Map of portugal, france, spain

pd <- por_df %>% mutate(country = 'Portugal') %>%
  bind_rows(esp_df %>% mutate(country = 'Spain')) %>%
  bind_rows(fra_df %>% mutate(country = 'France')) %>%
  bind_rows(ita %>% mutate(country = 'Italy')) %>%
  bind_rows(
    df %>% filter(country == 'Andorra') %>%
      mutate(ccaa = 'Andorra')
  )
keep_date = pd %>% group_by(country) %>% summarise(max_date= max(date)) %>% summarise(x = min(max_date)) %>% .$x
pd <- pd %>%
  group_by(ccaa) %>%
  filter(date == keep_date) %>%
  # filter(date == '2020-03-27') %>%
  ungroup %>%
  dplyr::select(date, ccaa, deaths, deaths_non_cum,
                cases, cases_non_cum) %>%
  left_join(regions_pop %>%
              bind_rows(
                world_pop %>% filter(country == 'Andorra') %>% dplyr::mutate(ccaa = country) %>%
                  dplyr::select(-region, -sub_region)
              )) %>%
  mutate(cases_per_million = cases / pop * 1000000,
         deaths_per_million = deaths / pop * 1000000) %>%
  mutate(cases_per_million_non_cum = cases_non_cum / pop * 1000000,
         deaths_per_million_non_cum = deaths_non_cum / pop * 1000000)

map_esp1 <- map_esp
map_esp1@data <- map_esp1@data %>% dplyr::select(ccaa)
map_fra1 <- map_fra
map_fra1@data <- map_fra1@data %>% dplyr::select(ccaa = NAME_1)
map_por1 <- map_por
map_por1@data <- map_por1@data %>% dplyr::select(ccaa = CCDR)
map_ita1 <- map_ita 
map_ita1@data <- map_ita1@data %>% dplyr::select(ccaa)
map_and1 <- map_and
map_and1@data <- map_and1@data %>% dplyr::select(ccaa = NAME_0)


map <- 
  rbind(map_esp1,
        map_por1,
        map_fra1,
        map_ita1,
        map_and1)

# Remove areas not of interest
centroids <- coordinates(map)
centroids <- data.frame(centroids)
names(centroids) <- c('x', 'y')
centroids$ccaa <- map@data$ccaa
centroids <- left_join(centroids, pd)
# map <- map_sp <- map[centroids$y >35 & centroids$x > -10 &
#              centroids$x < 8 & (centroids$y < 43  | map@data$ccaa %in% c('Occitanie', 'Nouvelle-Aquitaine') |
#                                   map@data$ccaa %in% esp_df$ccaa),]
map_sp <- map <-  map[centroids$x > -10 & centroids$y <47,]
# map_sp <- map <-  map[centroids$x > -10,]

# fortify
map <- fortify(map, region = 'ccaa')

# join data
map$ccaa <- map$id
map <- left_join(map, pd)
var <- 'deaths_per_million'
map$var <- as.numeric(unlist(map[,var]))
centroids <- centroids[,c('ccaa', 'x', 'y', var)]
centroids <- centroids %>%
  filter(ccaa %in% map_sp@data$ccaa)

# cols <- rev(RColorBrewer::brewer.pal(n = 9, name = 'Spectral'))
# cols <- c('#A16928','#bd925a','#d6bd8d','#edeac2','#b5c8b8','#79a7ac','#2887a1')
# cols <- c('#009392','#39b185','#9ccb86','#e9e29c','#eeb479','#e88471','#cf597e')
# cols <- c('#008080','#70a494','#b4c8a8','#f6edbd','#edbb8a','#de8a5a','#ca562c')
cols <- rev(colorRampPalette(c('darkred', 'red', 'darkorange', 'orange', 'yellow', 'lightblue'))(10))
g <- ggplot(data = map,
         aes(x = long,
             y = lat,
             group = group)) +
    geom_polygon(aes(fill = var),
                 lwd = 0.3,
                 color = 'darkgrey',
                 size = 0.6) +
      scale_fill_gradientn(name = '',
                           colours = cols) +
  # scale_fill_() +
  ggthemes::theme_map() +
  theme(legend.position = 'bottom',
        plot.title = element_text(size = 16)) +
  guides(fill = guide_colorbar(direction= 'horizontal',
                               barwidth = 50,
                               barheight = 1,
                               label.position = 'bottom')) +
  labs(title = 'Cumulative COVID-19 deaths per million population, western Mediterranean',
       subtitle = paste0('Data as of ', format(max(pd$date), '%B %d, %Y'))) +
  geom_text(data = centroids,
            aes(x = x,
                y = y,
                group = NA,
                label = paste0(ccaa, '\n',
                               round(deaths_per_million, digits = 2))),
            alpha = 0.8,
            size = 3)
g
ggsave('~/Desktop/totesmou/15_mapa_mediterranea.png',
       height = 5.6,
       width = 9.6)


databrew/covid19 documentation built on Aug. 24, 2020, 10:39 a.m.