# Basic knitr options
library(knitr)
opts_chunk$set(comment = NA, 
               # echo = FALSE, 
               warning = FALSE, 
               message = FALSE, 
               error = TRUE, 
               cache = FALSE,
               # fig.width = 8.64,
               # fig.height = 4.86,
               fig.path = 'figures/')
## Load libraries
library(covid19)
library(ggplot2)
library(lubridate)
library(dplyr)
library(ggplot2)
library(sp)
library(raster)
library(viridis)
library(ggthemes)

Maps of Spain

if(!'map.RData' %in% dir()){
  esp1 <- getData(name = 'GADM', country = 'ESP', level = 1)
# Remove canary
esp1 <- esp1[esp1@data$NAME_1 != 'Islas Canarias',]
espf <- fortify(esp1, region = 'NAME_1')

# Standardize names
# Convert names
map_names <- esp1@data$NAME_1
data_names <- sort(unique(esp_df$ccaa))
names_df <- tibble(NAME_1 = c('Andalucía',
 'Aragón',
 'Cantabria',
 'Castilla-La Mancha',
 'Castilla y León',
 'Cataluña',
 'Ceuta y Melilla',
 'Comunidad de Madrid',
 'Comunidad Foral de Navarra',
 'Comunidad Valenciana',
 'Extremadura',
 'Galicia',
 'Islas Baleares',
 'La Rioja',
 'País Vasco',
 'Principado de Asturias',
 'Región de Murcia'),
 ccaa = c('Andalucía',
 'Aragón',
 'Cantabria',
 'CLM',
 'CyL',
 'Cataluña',
 'Melilla',
 'Madrid',
 'Navarra',
 'C. Valenciana',
 'Extremadura',
 'Galicia',
 'Baleares',
 'La Rioja',
 'País Vasco',
 'Asturias',
 'Murcia'))


espf <- left_join(espf %>% dplyr::rename(NAME_1 = id), names_df)
centroids <- data.frame(coordinates(esp1))
names(centroids) <- c('long', 'lat')
centroids$NAME_1 <- esp1$NAME_1
centroids <- centroids %>% left_join(names_df)

# Get random sampling points

  random_list <- list()
  for(i in 1:nrow(esp1)){
    message(i)
    shp <- esp1[i,]
    # bb <- bbox(shp)
    this_ccaa <- esp1@data$NAME_1[i]
    # xs <- runif(n = 500, min = bb[1,1], max = bb[1,2])
    # ys <- runif(n = 500, min = bb[2,1], max = bb[2,2])
    # random_points <- expand.grid(long = xs, lat = ys) %>%
    #   mutate(x = long,
    #          y = lat)
    # coordinates(random_points) <- ~x+y
    # proj4string(random_points) <- proj4string(shp)
    # get ccaa
    message('getting locations of randomly generated points')
    # polys <- over(random_points,polygons(shp))
    # polys <- as.numeric(polys)
    random_points <- spsample(shp, n = 20000, type = 'random')
    random_points <- data.frame(random_points)
    random_points$NAME_1 <-  this_ccaa
    random_points <- left_join(random_points, names_df) %>% dplyr::select(-NAME_1)
    random_list[[i]] <- random_points
  }
  random_points <- bind_rows(random_list)
  random_points <- random_points %>% mutate(long = x,
                                            lat = y)

save(espf,
     esp1,
     names_df,
     centroids,
     random_points,
     file = 'map.RData')
} else {
  load('map.RData')
}

make_map <- function(var = 'deaths',
                     date = NULL,
                     pop = FALSE,
                     pop_factor = 100000,
                     points = FALSE){
  if(is.null(date)){
    the_date <- max(esp_df$date)
  } else {
    the_date <- date
  }
  left <- espf
  right <- esp_df[esp_df$date == the_date,c('ccaa', var)]

  names(right)[ncol(right)] <- 'var'
  if(pop){
    right <- left_join(right, esp_pop)
    right$var <- right$var / right$pop * pop_factor
  }
  map <- left_join(left, right)

  if(points){
    the_points <- centroids %>%
      left_join(right)
    g <- ggplot() +
      geom_polygon(data = map,
         aes(x = long,
             y = lat,
             group = group),
         fill = 'black',
         color = 'white',
         lwd = 0.4, alpha = 0.8) +
      geom_point(data = the_points,
                 aes(x = long,
                     y = lat,
                     size = var),
                 color = 'red',
                 alpha = 0.7) +
      scale_size_area(name = '', max_size = 20)
  } else {
    cols <- c('#008080','#70a494','#b4c8a8','#f6edbd','#edbb8a','#de8a5a','#ca562c')
    g <- ggplot(data = map,
         aes(x = long,
             y = lat,
             group = group)) +
    geom_polygon(aes(fill = var),
                 lwd = 0.3,
                 color = 'white') +
      scale_fill_gradientn(name = '',
                           colours = cols)
    # scale_fill_viridis(name = '' ,option = 'magma',
    #                    direction = -1) 
  }
  g +
    theme_map() +
    labs(subtitle = paste0('Data as of ', max(esp_df$date)))

}


make_dot_map <- function(var = 'deaths',
                     date = NULL,
                     pop = FALSE,
                     pop_factor = 100,
                     point_factor = 1,
                     points = FALSE,
                     point_color = 'darkred',
                     point_size = 0.6,
                     point_alpha = 0.5){


  if(is.null(date)){
    the_date <- max(esp_df$date)
  } else {
    the_date <- date
  }
    right <- esp_df[esp_df$date == the_date,c('ccaa', var)]
   names(right)[ncol(right)] <- 'var'
  if(pop){
    right <- left_join(right, esp_pop)
    right$var <- right$var / right$pop * pop_factor
  }
  map_data <- esp1@data %>%
    left_join(names_df) %>%
      left_join(right)
  map_data$var <- map_data$var / point_factor
  out_list <- list()
  for(i in 1:nrow(map_data)){
    sub_data <- map_data[i,]
    this_value = round(sub_data$var)

    if(this_value >= 1){
      this_ccaa = sub_data$ccaa
      # get some points
      sub_points <- random_points %>% filter(ccaa == this_ccaa)
      sampled_points <- sub_points %>% dplyr::sample_n(this_value)
      out_list[[i]] <- sampled_points
    }
  }
  the_points <- bind_rows(out_list)

  g <- ggplot() +
    geom_polygon(data = espf,
         aes(x = long,
             y = lat,
             group = group),
         fill = 'white',
         color = 'black',
         lwd = 0.4, alpha = 0.8) +
    geom_point(data = the_points,
               aes(x = long,
                   y = lat),
               color = point_color,
               size = point_size,
               alpha = point_alpha)
  g +
    theme_map() +
    labs(subtitle = paste0('Data as of ', max(esp_df$date)))

}

Deaths

Absolute number of deaths: points

make_map(var = 'deaths',
       points = T) +
  labs(title = 'Number of deaths',
       caption = '@joethebrew')

Absolute number of deaths: choropleth

make_map(var = 'deaths',
       points = F) +
  labs(title = 'Number of deaths',
       caption = '@joethebrew')

Number of deaths adjusted by population: points

make_map(var = 'deaths', pop = TRUE, points = T) +
  labs(title = 'Number of deaths per 100,000',
       caption = '@joethebrew')

Number of deaths adjusted by population: polygons

make_map(var = 'deaths', pop = TRUE, points = F) +
  labs(title = 'Number of deaths per 100,000',
       caption = '@joethebrew')

Number of deaths: 1 dot per death

make_dot_map(var = 'deaths', point_size = 0.25) +
  labs(title = 'COVID-19 deaths: 1 point = 1 death\nImportant: points are random within each CCAA; do not reflect exact location',
       caption = '@joethebrew')

Cases

Absolute number of cases: points

make_map(var = 'confirmed_cases',
       points = T) +
  labs(title = 'Number of confirmed cases',
       caption = '@joethebrew')

Absolute number of cases: choropleth

make_map(var = 'confirmed_cases',
       points = F) +
  labs(title = 'Number of confirmed cases',
       caption = '@joethebrew')

Number of cases adjusted by population: points

make_map(var = 'confirmed_cases', pop = TRUE, points = T) +
  labs(title = 'Number of confirmed cases per 100,000',
       caption = '@joethebrew')

Number of cases adjusted by population: polygons

make_map(var = 'confirmed_cases', pop = TRUE, points = F) +
  labs(title = 'Number of confirmed cases per 100,000',
       caption = '@joethebrew')

Number of cases: points

make_dot_map(var = 'confirmed_cases',
             point_size = 0.05, point_alpha = 0.5, point_factor = 10) +
  labs(title = 'COVID-19 cases: 1 point = 10 cases\nImportant: points are random within each CCAA; do not reflect exact location',
       caption = '@joethebrew')


databrew/covid19 documentation built on Aug. 24, 2020, 10:39 a.m.