opts_chunk$set(echo = F, warning = F, message = F)
# decorate data, or return as given if (params$decorate){ document_data <- See_GEM_formatter(GEMINI_data) } else{ document_data <- GEMINI_data}
r params$sample_name
{.tabset}DT::datatable(document_data$GEMINI_data, width = params$table_width, escape = FALSE, rownames = F, class='compact', filter='bottom', extensions = c('Buttons','FixedHeader', 'ColReorder'), options = list(columnDefs=list(list(targets=document_data$neg_core_index-1, visible = FALSE)), pageLength = 15, scrollX = TRUE, fixedHeader = TRUE, colReorder = TRUE, lengthMenu = list(c(5, 15, 30, 60, 100, -1), list('5', '15', '30', '60', '100', 'All')), dom = 'Bfrtip', buttons = list(list(extend = 'pageLength'), list(extend = 'colvis', collectionLayout='four-column'), list(extend = 'colvisGroup', text='Core Fields', hide = paste(document_data$neg_core_index-1, collapse = ','), show = paste(document_data$core_index-1, collapse = ',')), list(extend = 'colvisGroup', text='Family Genotypes', hide = paste(document_data$neg_genotypes-1, collapse = ','), show = paste(document_data$genotypes-1, collapse = ',')), list(extend = 'colvisGroup', text='In Silico Fields', hide = paste(document_data$neg_in_silico_index-1, collapse = ','), show = paste(document_data$in_silico_index-1, collapse = ',')), list(extend='colvisGroup', text='Show All', show = ':hidden' )))) %>% DT::formatStyle(columns = c('Color'), target = 'row', backgroundColor = DT::styleEqual(c(0, 1, 2), c('#ffffff', '#fff0dd', '#ffdddd')))
A small selection of outputs from the peddy tool.
For the plots, gray are all of the samples available in the vcf that peddy was run on. The colored points are samples in the family analyzed in this document.
# load peddy data ped_check <- fread(paste0(params$peddy_path_prefix, ".ped_check.csv")) het_check <- fread(paste0(params$peddy_path_prefix, ".het_check.csv")) sex_check <- fread(paste0(params$peddy_path_prefix, ".sex_check.csv")) peddy_id <- params$peddy_id het_processor <- function(df, stat_to_filter){ df %>% gather(stat, value, -c(sample_id)) %>% filter(stat == stat_to_filter) %>% mutate(value=as.numeric(value)) } het_data <- het_processor(het_check, 'het_ratio') median_data <- het_processor(het_check, 'median_depth') idr_baf_data <- het_processor(het_check, 'idr_baf')
het_ratio <- het_data %>% ggplot(aes(x=stat, y=value)) + geom_quasirandom(color = 'gray', alpha=0.7) + geom_quasirandom(data = het_data %>% filter(sample_id %in% peddy_id), aes(x=stat,y=value, colour=sample_id)) + theme_minimal() + xlab('') + ylab('') + ggtitle('Het Ratio') + theme( axis.text.x=element_blank(), axis.ticks.x=element_blank()) median_depth <- median_data %>% ggplot(aes(x=stat, y=value)) + geom_quasirandom(color = 'gray', alpha=0.7) + geom_quasirandom(data = median_data %>% filter(sample_id %in% peddy_id), aes(x=stat,y=value, colour=sample_id)) + theme_minimal() + xlab('') + ylab('') + ggtitle('Median Read Depth') + theme( axis.text.x=element_blank(), axis.ticks.x=element_blank()) idr_baf <- idr_baf_data %>% ggplot(aes(x=stat, y=value)) + geom_quasirandom(color = 'gray', alpha=0.7) + geom_quasirandom(data = idr_baf_data %>% filter(sample_id %in% peddy_id), aes(x=stat,y=value, colour=sample_id)) + theme_minimal() + xlab('') + ylab('') + ggtitle('IDR BAF') + theme( axis.text.x=element_blank(), axis.ticks.x=element_blank()) legend <- get_legend(idr_baf+ theme(legend.position="right")) plot_grid(median_depth + theme(legend.position="none"), NULL, het_ratio + theme(legend.position="none"), NULL, idr_baf + theme(legend.position="none"), NULL, legend, rel_widths = c(1,0.1,1,0.1,1,0.1,0.4), scale=0.9, nrow=1)
sex_check %>% filter(sample_id %in% peddy_id) %>% select('Sample ID' = sample_id, 'Pedigree Sex' = ped_sex, 'Predicted Sex' = predicted_sex, 'Error' = error) %>% DT::datatable(rownames = F, width = 800, class='compact', extensions = c('Buttons'), options = list(dom = 'Bfrtip', buttons = list(list(extend='pageLength'))))
ped_check %>% filter(sample_a %in% peddy_id, sample_b %in% peddy_id) %>% select('Sample 1' = sample_a, 'Sample 2' = sample_b, 'Relatedness' = rel, ibs0, ibs2, 'Pedigree Parents' = pedigree_parents, 'Predicted Parents' = predicted_parents, 'Parent Error' = parent_error) %>% DT::datatable(rownames = F, width = 800, class='compact', extensions = c('Buttons'), options = list(dom = 'Bfrtip', buttons = list(list(extend='pageLength'))))
ped_check %>% ggplot(aes(x=ibs0, y=ibs2)) + geom_point(aes(x=ibs0, y=ibs2), color='gray', alpha=0.7) + geom_jitter(data = ped_check %>% filter(sample_a %in% peddy_id, sample_b %in% peddy_id) %>% mutate('Sample - Sample' = paste0(sample_a, ' - ', sample_b)), aes(x=ibs0, y=ibs2, colour = `Sample - Sample`)) + geom_text_repel(data = ped_check %>% filter(sample_a %in% peddy_id, sample_b %in% peddy_id) %>% mutate('Sample - Sample' = paste0(sample_a, ' - ', sample_b)), aes(x=ibs0, y=ibs2, label = `Sample - Sample`, colour = `Sample - Sample`), box.padding = 1) + theme_minimal() + theme(legend.position="none")
This report is auto-generated with the See GEM R package on r strftime(Sys.time(), format = "%B %d, %Y")
The analyst for this report populated the information in this dynamic documents with a variety of GEMINI queries.
FAQ:
WARNINGS/LIMITATIONS
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.