estimateLong: Estimate parameters.

View source: R/estimateGH.R

estimateLongR Documentation

Estimate parameters.

Description

A function that estimates parameters by calling the "estimateLong_cpp()" function.

Usage

estimateLong(
  Y,
  locs = NULL,
  mixedEffect_list,
  measurment_list,
  processes_list,
  operator_list,
  step0 = 0.3,
  alpha = 0.3,
  learning_rate = 0,
  nBurnin_learningrate = NULL,
  nBurnin_base = 0,
  pSubsample = 1,
  polyak_rate = -1,
  subsample.type = 1,
  iter_start = 0,
  nPar_burnin = 0,
  pSubsample2 = 0.3,
  nIter = 10,
  nSim = 1,
  nBurnin = 10,
  silent = FALSE,
  seed = NULL,
  standardize.mixedEffects = FALSE,
  estimate_fisher = FALSE
)

Arguments

Y

A numeric list that contains outcome values.

locs

A numeric list that contains the timings at which the outcomes are collected.

mixedEffect_list

A list of inputs for random effects.

  • noise The distribution of the mixed effects.

  • B_random A list that contains the random effect covariates (needs to be matrix, can be NULL).

  • B_fixed A list that contains the fixed effect covariates (needs to be matrix, can be NULL).

  • beta_random Initial values for the parameters of the random effects (mean parameter) (if not specified set to zero).

  • beta_fixed Initial values for the parameters of the fixed effects (if not specified set to zero).

  • Sigma Initial values for the parameters of the variance-covariance matrix of the random effects (if not specified set to I ).

  • nu Shape parameter for noise (NIG only)

  • mu Shift parameter for noise (NIG only)

  • U A list of inital values of the random effects.

  • V A list of inital values of the variance effects.

measurment_list

A list of inputs for measurement error.

  • sigma Measurement noise variance parameter.

  • nu Shape parameter for noise (NIG only).

  • Vs A list of inital values for the noise of the measurement.

processes_list

A list of inputs for the process.

  • noise Distribution of the process.

  • nu Shape parameter (for NIG or GAL).

  • mu Asymmetry parameter (for NIG or GAL).

step0

A numeric value for stepsize for the optimizer; step0 / i^alpha.

alpha

A numeric value for stepsize for the optimizer; step0 / i^alpha.

learning_rate

A numeric value for the parameter of stochastic gradient.

nBurnin_learningrate

A numeric value until which the learning will not be started.

nBurnin_base

A numerical value for burn-in simulations that are performed for a subject that is sampled for the first time in the estimation method.

pSubsample

A numeric value for the portion of data to be used in each gradient iteration.

polyak_rate

A numeric value for moving average of parameters; -1: inactive, 0: pure mean.

subsample.type

A numeric value for the type of subsampling; 1: uniform sampling, 2: sample size weighted, 3: weighted sampling by gradient size, 4: grouped sub-sampler.

nPar_burnin

A numeric value; "M-step" updates will be used until this iteration.

pSubsample2

A numeric value for the portion of the data to be used in each gradient subsampling weighted by gradient.

nIter

A numeric value for the number of iteration that will be used by the stochastic gradient.

nSim

A numeric value for the number of samples of the Gibbs sampler to estimate the gradient.

silent

A logical value for printing the details of the iterations; "TRUE" indicates do not print, "FALSE" indicates print.

seed

A numerical value for starting the Gibbs samplers from fixed seed.

standardize.mixedEffects

A logical variable for standardising the covariates; "FALSE" indicates no standardisation, "TRUE" standardisation.

estimate_fisher

A logical variable for whether Fisher-Information matrix to be obtained; "FALSE" indicates do not obtain, "TRUE" obtain.

Details

This function calls "estimateLong_cpp()" internally. It is wrapped by "ngme", and is not advised to be used alone.

Value

A list of output.

See Also

ngme

Examples

  ## Not run: 
  data(srft_data)
  fit <- estimateLong(...)
  
## End(Not run)

davidbolin/ngme documentation built on Dec. 5, 2023, 11:48 p.m.