Multivariate Notation

$\bf{X}{n\times 1}$ denotes an $n$ dimensional random vector given as: $$\bf{X} = \left( {\begin{array}{*{20}{c}} {\bf{X}{1}} \ {\bf{X}{2}} \ \vdots \ {{X_n}} \end{array}} \right){n \times 1}$$

and $\Sigma$ is the covariance matrix which is symmetric and non-negative definite:

$$\Sigma = {\left[ {\begin{array}{*{20}{c}} {{\sigma_{11}}}&{{\sigma_{12}}}& \cdots &{{\sigma_{1n}}} \ {{\sigma_{21}}}&{{\sigma_{22}}}&{}&{{\sigma_{2n}}} \ \vdots &{}& \ddots & \vdots \ {{\sigma_{n1}}}&{{\sigma_{n2}}}& \cdots &{{\sigma_{nn}}} \end{array}} \right]_{n \times n}}$$

The symmetric property means that:

$$\Sigma = {\left[ {\begin{array}{{20}{c}} {{\sigma_{11}}}&{{\sigma_{12}}}& \cdots &{{\sigma_{1n}}} \ {{\sigma_{21}}}&{{\sigma_{22}}}&{}&{{\sigma_{2n}}} \ \vdots &{}& \ddots & \vdots \ {{\sigma_{n1}}}&{{\sigma_{n2}}}& \cdots &{{\sigma_{nn}}} \end{array}} \right]_{n \times n}} = {\left[ {\begin{array}{{20}{c}} {{\sigma_{11}}}&{{\sigma_{12}}}& \cdots &{{\sigma_{1n}}} \ {{\sigma_{12}}}&{{\sigma_{22}}}&{}&{{\sigma_{2n}}} \ \vdots &{}& \ddots & \vdots \ {{\sigma_{1n}}}&{{\sigma_{2n}}}& \cdots &{{\sigma_{nn}}} \end{array}} \right]_{n \times n}}$$

where each $\sigma_{ij} = \operatorname{cov} \left({X_i,X_j}\right)$.

Note to take the expectation of $\bf{X}$ we need:

[E\left[ \bf{X} \right] = \bf{\mu} = {\left( {\begin{array}{*{20}{c}} {{\mu 1}} \ {{\mu _2}} \ \vdots \ {{\mu _n}} \end{array}} \right){n \times 1}}]

Therefore, the covariance calculation is given as:

[\Sigma = E\left[ {\left( {\bf{X} - \bf{\mu} } \right){{\left( {\bf{X} - \bf{\mu} } \right)}^T}} \right]]

Multivariate Normal Distribution

Consider the standard Multivariate Normal Distribution given by $Z \sim {N_n}\left( {\bf{0},{\bf{I}_n}} \right)$ where $\bf{I}_n$ represent the identity matrix:

[{\bf{I}_n} = \left[ {\begin{array}{*{20}{c}} 1&0& \cdots &0 \ 0&1&{}&0 \ \vdots &{}& \ddots & \vdots \ 0&0& \cdots &1 \end{array}} \right]]

The standard multivariate normal distribution density function is given by:

[{f_Z}\left( z \right) = \frac{1}{{{{\left( {2\pi } \right)}^{n/2}}}}\exp \left( { - \frac{1}{2}{z^T}z} \right) = \prod\limits_{i = 1}^n {\frac{1}{{\sqrt {2\pi } }}\exp \left( { - \frac{1}{2}z_i^2} \right)} ]

Now, if we let the Multivariate Normal Distribution with mean $\mu \ne 0$ and covariance $\Sigma \ne \bf{I}_n$ we have:

$$\bf{X} \sim N_{n}\left({\bf{\mu}, \Sigma}\right)$$ has a density function of:

[{f_X}\left( \bf{x} \right) = \frac{1}{{{{\left( {2\pi } \right)}^{n/2}}{{\left| \Sigma \right|}^{1/2}}}}\exp \left{ { - \frac{1}{2}{{\left( {\bf{x} - \bf{\mu} } \right)}^T}{\bf{\Sigma}^{ - 1}}\left( {\bf{x} - \bf{\mu} } \right)} \right}]

The Moment Generating Function of the standard Multivariate Normal Distribution is then given to be:

[{M_\bf{X}}\left( \bf{t} \right) = \exp \left( {{\bf{t}^T}\bf{\mu} + \frac{1}{2}{\bf{t}^T}\Sigma \bf{t}} \right)]

for [\bf{t} = \left( {\begin{array}{*{20}{c}} {{t_1}} \ {{t_2}} \ \vdots \ {{t_n}} \end{array}} \right) \in {\mathbb{R}^n}]

Multivariate Distribution under Linear Transformation

If we let $\bf{Y}{m \times 1} = \bf{A}{m\times n}\bf{X}{n\times 1} + \bf{b}{m\times 1}$, where $\bf{A}$ is a $m \times n$ matrix and $b \in \mathbb{R}^m$, then $Y \sim N_{m}\left(\bf{A}\bf{\mu} + \bf{b}, \bf{A}\bf{\Sigma}\bf{A}^T\right)$.

Therefore, we can view $\bf{X}$ with a mean $\mu \ne 0$ and covariance $\Sigma \ne \bf{I}_n$ as a linear transformation of the Standard Multivariate Normal Distribution with:

$$\bf{X}{n \times 1} = {\bf{\Sigma}^{\frac{1}{2}}}{n \times n}\bf{Z}{n \times 1} + \bf{\mu}{n \times 1} $$

Conditional Multivariate Normal Distribution

Given the above discussion, we can derive the Conditional Multivariate Normal Distribution in the following light.

Consider $\bf{X}_1$ is of dimension $m < n$ and $\bf{X}_2$ is of dimension $n-m$. Note that $\bf{X}_1$ in this case acts as the first partition and $\bf{X}_2$ acts as the second partition. We can define these components as:

$$\bf{X} = \left( {\begin{array}{*{20}{c}} {\bf{X}_1 } \ {\bf{X}_2 } \end{array}} \right)$$

$$\bf{\mu} = \left( {\begin{array}{*{20}{c}} {\bf{\mu}_1} \ {\bf{\mu}_2} \end{array}} \right)$$

$$\Sigma = \left( {\begin{array}{*{20}{c}} {\bf{\Sigma}{11}}&{\bf{\Sigma}{12}} \ {\bf{\Sigma}{21}}&{\bf{\Sigma}{22}} \end{array}} \right)$$

Now, we define a linear transformation in terms of both components:

$$\bf{Y} = \bf{X}_1 + \bf{A}\bf{X}_2$$

where $\bf{A} = -\bf{\Sigma}{12}\bf{\Sigma}{22}^{-1}$.

Therefore, we have shown that since both $\bf{Y}$ and $\bf{X}_2$ are jointly normal by definition and have a $\operatorname{cov}$ that is 0, they are independent.

Next, consider the expectation of the $\bf{Y}$ transformation:

[\begin{aligned} E\left[ \bf{Y} \right] &= E\left[ { \bf{X}{1} + \bf{A}\bf{X}{2} } \right] \ &= E\left[ {\bf{X}{1} } \right] + \bf{A}E\left[ {\bf{X}{2} } \right] \ &= {\bf{\mu}_1} + \bf{A}{\bf{\mu} _2} \end{aligned} ]

If we rearrange the transformation in terms of $X_1$, we get:

$$\begin{aligned} \bf{Y} &= \bf{X}{1} + \bf{A}\bf{X}{2} \ \bf{X}{1} &= \bf{Y} - \bf{A}\bf{X}{2} \ \end{aligned}$$

Applying the conditioning logic to obtain a conditional expectation between $\bf{X}_1$ and $\bf{X}_2$ we get:

[\begin{aligned} E\left[ {\bf{X}{1}|\bf{X}{2}} \right] &= E\left[ {\left( {\bf{Y} - \bf{A}\bf{X}{2}} \right)|\bf{X}{2}} \right] \ &= E\left[ {\bf{Y} |\bf{X}{2}} \right] - E\left[ {\bf{A}\bf{X}{2}|\bf{X}{2}} \right] \ &= E\left[ {\bf{Y} |\bf{X}{2}} \right] - \bf{A}\bf{X}{2} \ &= E\left[ \bf{Y} \right] - \bf{A}\bf{X}{2} \ &= \left( {\bf{\mu}{1} + \bf{A}{\bf{\mu}{2}}} \right) - \bf{A}\bf{X}{2} \ &= \bf{\mu}{1} + \bf{A}\left( {{\bf{\mu}{2}} - \bf{X}{2}} \right) \ &= \bf{\mu}{1} + {\bf{\Sigma}{12}}\bf{\Sigma}{22}^{ - 1}\left( {\bf{X}{2} - \bf{\mu}_{2}} \right) \ \end{aligned} ]

We now have the conditional expectation, in order to be able to declare the conditional multivariate normal, we must also have the conditional covariance matrix.

Before we begin, we aim to prove a short lemma relating the covariance between the transformation and the second partition as:

$$\begin{aligned} \operatorname{cov} \left( {\bf{Y},\bf{X}{2} } \right) &= \operatorname{cov} \left( {\bf{X}{1},\bf{X}{2} } \right) + \operatorname{cov} \left( {A\bf{X}{2},\bf{X}{2} } \right) \ &= {\bf{\Sigma}{12}} + A\operatorname{var} \left( {\bf{X}{2} } \right) \ &= {\bf{\Sigma}{12}} - {\bf{\Sigma}{12}}\bf{\Sigma}{22}^{ - 1}{\bf{\Sigma}_{22}} \ &= 0 \ \end{aligned}$$

Returning, we proceed to derive the conditional results using the lemma.

$$\begin{aligned} \operatorname{var} \left( {\bf{X}{1} |\bf{X}{2} } \right) &= \operatorname{var} \left( {\left( {Y - \bf{A}\bf{X}{2} } \right)|\bf{X}{2} } \right) \ &= \operatorname{var} \left( {Y|\bf{X}{2} } \right) + \underbrace {\operatorname{var} \left( {\bf{A}\bf{X}{2} |\bf{X}{2} } \right)}{{\text{Constant}} \Rightarrow {\text{0}}} - \underbrace {A\operatorname{cov} \left( {Y, - \bf{X}{2} } \right)}{ = 0{\text{ by above}}} - \underbrace {\operatorname{cov} \left( {Y, - \bf{X}{2} } \right){A^T}}{ = 0{\text{ by above}}} \ &= \operatorname{var} \left( {Y|\bf{X}_{2} } \right) \ &= \operatorname{var} \left( \bf{Y} \right) \ \end{aligned}$$

Therefore, the conditional variance is given by the variance of the linear transformation $\operatorname{var} \left( \bf{Y} \right)$

$$\begin{aligned} \operatorname{var} \left( {\bf{X}{1} |\bf{X}{2} } \right) &= \operatorname{var} \left( \bf{Y} \right) \ &= \operatorname{var} \left( {\bf{X}{1} + \bf{A}\bf{X}{2} } \right) \ &= \operatorname{var} \left( {\bf{X}{1} } \right) + \operatorname{var} \left( {\bf{A}\bf{X}{2} } \right) + \operatorname{cov} \left( {\bf{X}{1} ,\bf{A}\bf{X}{2} } \right) + \operatorname{cov} \left( {\bf{X}{2} ,\bf{X}{1} {A^T}} \right) \ &= \operatorname{var} \left( {\bf{X}{1} } \right) + \bf{A}\operatorname{var} \left( {\bf{X}{2} } \right){\bf{A}^T} + A\operatorname{cov} \left( {\bf{X}{1} ,\bf{X}{2} } \right) + \operatorname{cov} \left( {\bf{X}{2} ,\bf{X}{1} } \right){\bf{A}^T} \ &= {\bf{\Sigma}{11}} + \bf{A}{\bf{\Sigma}{22}}{\bf{A}^T} + \bf{A}{\bf{\Sigma}{21}} + {\bf{\Sigma}{12}}{A^T} \ &= {\bf{\Sigma}{11}} + \left( { - {\bf{\Sigma}{12}}\bf{\Sigma}{22}^{ - 1}} \right){\bf{\Sigma}{22}}\left( { - \bf{\Sigma}{22}^{ - 1}{\bf{\Sigma}{12}}} \right) + \left( { - {\bf{\Sigma}{12}}\bf{\Sigma}{22}^{ - 1}} \right){\bf{\Sigma}{21}} + {\bf{\Sigma}{12}}\left( { - \bf{\Sigma}{22}^{ - 1}{\bf{\Sigma}{12}}} \right) \ &= {\bf{\Sigma}{11}} + {\bf{\Sigma}{12}}\bf{\Sigma}{22}^{ - 1}{\bf{\Sigma}{22}}\bf{\Sigma}{22}^{ - 1}{\bf{\Sigma}{12}} - {\bf{\Sigma}{12}}\bf{\Sigma}{22}^{ - 1}{\bf{\Sigma}{21}} - {\bf{\Sigma}{12}}\bf{\Sigma}{22}^{ - 1}{\bf{\Sigma}{12}} \ &= {\bf{\Sigma}{11}} + {\bf{\Sigma}{12}}\bf{\Sigma}{22}^{ - 1}{\bf{\Sigma}{22}}\bf{\Sigma}{22}^{ - 1}{\bf{\Sigma}{12}} - 2{\bf{\Sigma}{12}}\bf{\Sigma}{22}^{ - 1}{\bf{\Sigma}{21}} \ &= {\bf{\Sigma}{11}} + {\bf{\Sigma}{12}}\bf{\Sigma}{22}^{ - 1}{\bf{\Sigma}{12}} - 2{\bf{\Sigma}{12}}\bf{\Sigma}{22}^{ - 1}{\bf{\Sigma}{21}} \ &= {\bf{\Sigma}{11}} - {\bf{\Sigma}{12}}\bf{\Sigma}{22}^{ - 1}{\bf{\Sigma}{21}} \ \end{aligned}$$

Therefore, the Conditional Multivariate Normal Distribution is given by:

$$ \bf{X}{1} | \bf{X}{2} \sim N_{m} \left( { \bf{\mu}{1} + {\bf{\Sigma}{12}}\bf{\Sigma}{22}^{ - 1}\left( {\bf{X}{2} - \bf{\mu}{2}} \right),{\bf{\Sigma}{11}} - {\bf{\Sigma}{12}}\bf{\Sigma}{22}^{ - 1}{\bf{\Sigma}_{21}}} \right) $$



daviddalpiaz/appliedstats documentation built on Sept. 16, 2024, 5:09 a.m.