#' bayespca: Regularized Principal Component Analysis via Variational Bayes inference.
#'
#' @description A package for estimating PCA with Variational Bayes inference.
#'
#' @details Bayesian estimation of weight vectors in PCA.
#' To achieve regularization, the method allows specifying fixed variances
#' in the prior distributions of the weights; alternatively, it is possible
#' to implement Jeffrey's and Inverse Gamma priors on such parameters.
#' In turn, the Inverse Gamma's can have fixed shape hyperparameter; and
#' fixed or random scale hyperparameter. Last, the method allows performing
#' component-specific stochastic variable selection (`spike-and-slab` prior).
#'
#'
#'
# '
#' @section Functions:
#' \itemize{
#' \item \code{\link{vbpca}} for model estimation;
#' \item \code{\link{vbpca_control}} for settings of control parameters;
#' \item \code{is.vbpca} for testing the class;
#' \item \code{\link{plothpdi}} for plotting high probability density intervals.
#' }
#'
#'
#' @references
#' \itemize{
#'
#' \item [1] C. M. Bishop. 'Variational PCA'. In Proc. Ninth Int. Conf. on Artificial Neural Networks.
#' ICANN, 1999.
#'
#' \item [2] E. I. George, R. E. McCulloch (1993). 'Variable Selection via Gibbs Sampling'.
#' Journal of the American Statistical Association (88), 881-889.
#'
#'
#' }
#'
#'
#' @author D. Vidotto <d.vidotto@@uvt.nl>
#'
#' @docType package
#' @name bayespca
#' @aliases bayespca
#'
#'
#' @useDynLib bayespca, .registration = TRUE
#'
#' @importFrom Rcpp evalCpp
#' @importFrom ggplot2 ggplot aes geom_pointrange geom_hline coord_flip xlab
#' @importFrom grDevices recordPlot colors
#' @importFrom graphics plot par
#' @importFrom stats na.omit qnorm
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.