PPBDS.data
provides the data and the tutorials used in Preceptor’s
Primer for Bayesian Data Science,
the textbook used in Gov 50:
Data at Harvard
University.
As this package is not released on CRAN, you must install it directly from GitHub.
remotes::install_github("davidkane9/PPBDS.data")
After installing the package, it loads as any package should.
library(tidyverse)
library(PPBDS.data)
qscores
#> # A tibble: 748 x 8
#> name department number term enrollment hours rating instructor
#> <chr> <chr> <chr> <chr> <int> <dbl> <dbl> <chr>
#> 1 Introduction to… AFRAMER 100Y 2019-… 49 2.6 4.2 Jesse McCa…
#> 2 American Democr… AFRAMER 123Z 2019-… 49 3.6 4.4 Cornel West
#> 3 Urban Inequalit… AFRAMER 125X 2019-… 40 5.2 4.5 Elizabeth …
#> 4 Richard Wright AFRAMER 130X 2019-… 23 7.2 4.4 Glenda Car…
#> 5 19th century Bl… AFRAMER 131Y 2019-… 20 3.5 4.9 Linda Chav…
#> 6 Social Revoluti… AFRAMER 199X 2019-… 19 7.2 4.8 Alejandro …
#> 7 Martin Luther K… AFRAMER 199Y 2019-… 40 4.2 4.7 Brandon Mi…
#> 8 Elementary Afri… AFRIKAAN AB 2019-… 22 2.9 4.9 John M Mug…
#> 9 Elementary Jama… JAMAICAN AB 2019-… 18 1.5 4.9 John M Mug…
#> 10 Elementary West… WSTAFRCN AB 2019-… 29 2.6 4 John M Mug…
#> # … with 738 more rows
Once the library is loaded and you have confirmed that it can be
accessed in your local environment, the data sets can be called as
objects and used like any other data you would otherwise read in and
assign to an object manually. See the following example of a plot using
PPBDS.data::qscores
.
library(ggplot2)
qscores %>%
filter(department == "GOV") %>%
ggplot(aes(hours, rating, color = term)) +
geom_point(aes(size = enrollment), alpha = 0.4) +
geom_smooth(method = "lm", formula = y ~ x, se = FALSE) +
facet_wrap(~term) +
labs(
title = "Student Course Evaluations at Harvard",
subtitle = "Department of Government",
caption = "Data provided by Aurash Vatan '23",
x = "Weekly workload, hours",
y = "Rating, 1 (worst) to 5 (best)",
size = "Enrollment") +
theme_linedraw() +
theme(
text = element_text(family = "Palatino"),
axis.text.x = element_text(size = 10),
axis.text.y = element_text(size = 10)) +
scale_color_discrete(guide = "none")
citation("PPBDS.data")
#>
#> To cite 'PPBDS.data' in publications use:
#>
#> David Kane. 2020. 'PPBDS.data'. R package version 0.1.0,
#> <https://github.com/davidkane9/PPBDS.data>.
#>
#> A BibTeX entry for LaTeX users is
#>
#> @Manual{,
#> title = {PPBDS.data},
#> author = {David Kane},
#> year = {2020},
#> url = {https://github.com/davidkane9/PPBDS.data},
#> }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.