layer_spline | R Documentation |
Wrapper function to create spline layer
layer_spline( object, name = NULL, trainable = TRUE, input_shape, regul = NULL, Ps, use_bias = FALSE, kernel_initializer = "glorot_uniform", bias_initializer = "zeros", variational = FALSE, posterior_fun = NULL, diffuse_scale = 1000, output_dim = 1L, k_summary = k_sum, ... )
object |
or layer object. |
name |
An optional name string for the layer (should be unique). |
trainable |
logical, whether the layer is trainable or not. |
input_shape |
Input dimensionality not including samples axis. |
regul |
if set to 0, no regularization is applied |
Ps |
list of penalty matrices times lambdas |
use_bias |
whether or not to use a bias in the layer. Default is FALSE. |
kernel_initializer |
function to initialize the kernel (weight). Default is "glorot_uniform". |
bias_initializer |
function to initialize the bias. Default is 0. |
variational |
logical, if TRUE, priors corresponding to the penalties
and posteriors as defined in |
posterior_fun |
function defining the variational posterior |
diffuse_scale |
diffuse scale prior for scalar weights |
output_dim |
the number of units for the layer |
k_summary |
keras function for the penalty (see |
... |
further arguments passed to |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.