knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(dplyr) library(wastdr) library(turtleviewer) data("turtledata")
This vignette demonstrates how to filter and analyse the supplied data.
First, we want to filter data to a certain area.
area_names <- turtledata$sites$area_name %>% unique() area_names filter_cdo <- . %>% dplyr::filter(area_name == "Cape Dommett") filter_pth <- . %>% dplyr::filter(area_name == "Port Hedland")
A first example of using supplied data.
turtledata$tracks %>% filter_cdo %>% wastdr::map_tracks_odkc(sites=turtledata$sites) turtledata$tracks %>% filter_pth %>% wastdr::map_tracks_odkc(sites=turtledata$sites) turtledata$tracks %>% filter_cdo() %>% turtleviewer::sf_as_tbl() %>% dplyr::group_by(season, site_name, nest_type) %>% dplyr::tally() %>% dplyr::ungroup() %>% tidyr::spread(nest_type, n, fill = 0) %>% turtleviewer::rtbl()
TODO
turtledata$mwi %>% # filter by any area_name %>% wastdr::map_mwi_odkc(sites=turtledata$sites) # tracks_cdo %>% sf_as_tbl() %>% rt() # TODO export helpers to wastdr # tracks_pth %>% sf_as_tbl() %>% rt()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.