## code to prepare `tes_data` dataset goes here
pacman::p_load(rio,
tidyverse)
data <- import("data-raw/tidyTESresults_updated2023.xlsx")
split_ci <- function(x, y){
as.numeric(str_trim(word(x, y, sep = ",")))
}
tes_data <- data %>%
mutate(across(where(is.character), ~na_if(.x, "NA"))) %>%
janitor::remove_empty("cols") %>%
mutate(PerProtocol_CI_D28_Uncorrected_low =
split_ci(PerProtocol_ConfidenceIntervals_D28_Uncorrected, 1),
PerProtocol_CI_D28_Uncorrected_high =
split_ci(PerProtocol_ConfidenceIntervals_D28_Uncorrected, 2),
PerProtocol_D28_CI_Corrected_low =
split_ci(PerProtocol_D28_ConfidenceIntervals_Corrected, 1),
PerProtocol_D28_CI_Corrected_high =
split_ci(PerProtocol_D28_ConfidenceIntervals_Corrected, 2),
PerProtocol_CI_D42_Uncorrected_low =
split_ci(PerProtocol_ConfidenceIntervals_D42_Uncorrected, 1),
PerProtocol_CI_D42_Uncorrected_high =
split_ci(PerProtocol_ConfidenceIntervals_D42_Uncorrected, 2),
PerProtocol_CI_D42_Ccorrected_low =
split_ci(PerProtocol_ConfidenceIntervals_D42_Ccorrected, 1),
PerProtocol_CI_D42_Ccorrected_high =
split_ci(PerProtocol_ConfidenceIntervals_D42_Ccorrected, 2),
Kaplan_Meier_d28_CI_Uncorrected_low =
split_ci(`Kaplan-Meier day 28_ConfIntervals_Uncorrected`, 1),
Kaplan_Meier_d28_CI_Uncorrected_high =
split_ci(`Kaplan-Meier day 28_ConfIntervals_Uncorrected`, 2),
Kaplan_Meier_d28_CI_corrected_low =
split_ci(`Kaplan-Meier Day 28_ConfIntervals_corrected`, 1),
Kaplan_Meier_d28_CI_corrected_high =
split_ci(`Kaplan-Meier Day 28_ConfIntervals_corrected`,2)) %>%
select(Country,
Site,
`Study Pop`,
`Start Year`,
`End Year`,
`Year of Study Report`,
`Arm (Antimalarial)`,
`First Line Anitmalarial`,
PerProtocol_D28_Uncorrected,
PerProtocol_CI_D28_Uncorrected_low,
PerProtocol_CI_D28_Uncorrected_high,
PerProtocol_D28_Corrected,
PerProtocol_D28_CI_Corrected_low,
PerProtocol_D28_CI_Corrected_high,
PerProtocol_D42_Uncorrected,
PerProtocol_CI_D42_Uncorrected_low,
PerProtocol_CI_D42_Uncorrected_high,
PerProtocol_D42_Corrected,
PerProtocol_CI_D42_Corrected_low = PerProtocol_CI_D42_Ccorrected_low,
PerProtocol_CI_D42_Corrected_high = PerProtocol_CI_D42_Ccorrected_high,
`Kaplan-Meier day 28_Uncorrected`,
Kaplan_Meier_d28_CI_Uncorrected_low,
Kaplan_Meier_d28_CI_Uncorrected_high,
`Kaplan-Meier Day 28_corrected`,
Kaplan_Meier_d28_CI_corrected_low,
Kaplan_Meier_d28_CI_corrected_high,
`Kaplan-Meier day 42_Uncorrected`,
`Kaplan-Meier Day 42_corrected`,
`Genotype markers`,
`Raw Genotyping Available`,
`Reinfections included in numerator of corrected efficacy` =
`Reinfections included in numerator of corrected efficacy?`,
`Day of efficacy results`,
PercentACPR_Corrected,
ConfidenceInt_Corrected,
`MOP Funding Year`,
Funder,
report_link = `DOI/Link to repot`,
Lat,
Long)
# sf::st_as_sf(coords = c("Long", "Lat"), crs = 4326)
usethis::use_data(tes_data, overwrite = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.