TMCMCpostsample2D: MCMC posterior sampling for 2D landmark data (Gaussian...

View source: R/TMCMCpostsample2D.R

TMCMCpostsample2DR Documentation

MCMC posterior sampling for 2D landmark data (Gaussian likelihood with Isotropic Error Variance)

Description

Draws posterior from 5 parameters "c1","c2", "b", "theta", "Sigma"

Usage

TMCMCpostsample2D(myData, choice, Nlandmark, tune, Nsample)

Arguments

myData

3D array containing 2 dimensional landmark

choice

Which to compare with 1st object or mean obj

Nlandmark

How many landmarks are there for each object? (usually nrow(myData,,1))

tune

Tuning value of MCMC sampler

Nsample

Number of MCMC sample desired

Details

"c1","c2" = Location parameter "b" = dilation parameter "theta" =Rotation angle "Sigma" = Isotropic error variation parameter Note that, here we are assuming Isotropy of error variance

Value

matrix containing samples from posterior density of parameter

Examples

## Not run: 
require(shapes)
data(apes)
myData = apes$x
ape_ress_10000=MCMCpostsample2D(apes$x,10,nrow(myData[,,1]), tune=1,10)

## End(Not run)


debashischatterjee111/BPviGM1 documentation built on April 8, 2023, 7:28 p.m.