knitr::opts_chunk$set(echo = TRUE) devtools::load_all(".") library(tidyverse)
simcor = function(r = 0) { x = rnorm_multi(n = 1e4, vars = 2, r = r, empirical = TRUE) data.frame( #p = cor(x$X1, x$X2, method = "pearson"), k = cor(x$X1, x$X2, method = "kendall"), s = cor(x$X1, x$X2, method = "spearman") ) } iterations = 10 df = data.frame( r = seq(-.9, .9, .1) ) |> crossing(i = 1:iterations) |> mutate(cor = map(r, simcor)) |> unnest(cor) |> pivot_longer(k:s, names_to = "method", values_to = "cor") ggplot(df, aes(x = r, y = cor, color = method)) + geom_abline(slope = 1, intercept = 0, color = "grey30") + geom_point(size = 0.25) + scale_color_manual(values = c("darkorchid4", "firebrick"))
simcorlikert = function(r = 0) { x = rmulti(n = 1e4, dist = c(X1 = "likert", X2 = "likert"), params = list( X1 = list(prob = c(2, 3, 4, 3, 2)), X2 = list(prob = c(1, 2, 3, 4, 3, 2, 1)) ), r = r, empirical = TRUE) data.frame( p = cor(x$X1, x$X2, method = "pearson"), k = cor(x$X1, x$X2, method = "kendall"), s = cor(x$X1, x$X2, method = "spearman") ) } iterations = 1 df = data.frame( r = seq(0, .75, .25) ) |> crossing(i = 1:iterations) |> mutate(cor = map(r, simcorlikert)) |> unnest(cor) |> pivot_longer(p:s, names_to = "method", values_to = "cor") ggplot(df, aes(x = r, y = cor, color = method)) + geom_abline(slope = 1, intercept = 0, color = "grey30") + geom_point(size = 0.5) + scale_color_manual(values = c("firebrick", "dodgerblue3", "darkorchid4"))
ggplot(x, aes(X1, X2)) + geom_bin_2d(binwidth = 0.5)
cmat <- matrix(c(1, 0.30, 0.10, 0.30, 1, 0.30, 0.10, 0.30, 1), 3, 3) set.seed(1) perf_dat_1 <- rmulti( n = 20, dist = c(education = "norm", OA = "norm", job_perf = "norm"), params = list(education = c(mean = 15, sd = 3), OA = c(mean = 30, sd = 5), job_perf = c(mean = 4, sd = 1.5), r = cmat, empirical = TRUE )) perf_dat_2 <- rnorm_multi( n = 20, mu = c(15, 30, 4), sd = c(3, 5, 1.5), r = cmat, varnames = c("education", "OA", "job_perf"), empirical = TRUE ) get_params(perf_dat_1); get_params(perf_dat_2)
df = crossing( size = 1:10, prob = 1:10/10 ) |> rowwise()|> mutate(data = list(x = rnbinom(1e4, size, prob)), mean = mean(data), sd = sd(data), max = max(data)) df |> unnest(data) |> ggplot(aes(data, fill = factor(size))) + geom_histogram(binwidth = 1) + facet_grid(prob ~ size, scales = "free")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.