Clone app from github
git clone git@github.com:decusInLabore/testbiologicSC.git
mv testbiologicSC yourApp
Run development version with default dataset (from Crick DB) locally:
# Set options here
options(golem.app.prod = FALSE) # TRUE = production mode, FALSE = development mode
# Detach all loaded packages and clean your environment
golem::detach_all_attached()
# rm(list=ls(all.names = TRUE))
# Document and reload your package
golem::document_and_reload()
# Run the application
run_app()
Structure of the data directory that needs to be added to the above app. data ├── connect │ └── db.txt └── pbmc_small_app2_DB
Go to the dir
devtools::install_github("decusinlabore/biologicSC")
library(biologicSC)
library(Seurat)
testObj <- pbmc_small
all.genes <- rownames(testObj)
testObj <- ScaleData(testObj, features = all.genes)
testObj <- RunPCA(testObj, npcs = 3)
testObj <- RunUMAP(testObj, dims = 1:3)
testObj <- FindNeighbors(testObj, dims = 1:3)
testObj <- FindClusters(testObj, resolution = 0.5)
testObj@meta.data[["all"]] <- "all"
testObj@meta.data[["sampleName"]] <- "SampleA"
testObj@meta.data[["sampleColor"]] <- "#009900"
testObj@meta.data[["clusterName"]] <- paste0("Cluster_", as.vector(testObj@meta.data$seurat_clusters))
clusterVec <- unique(testObj@meta.data$clusterName)
clusterCols <- scales::hue_pal()(length(clusterVec))
dfCol <- data.frame(clusterVec, clusterCols)
dfCell <- data.frame(cellID = row.names(testObj@meta.data), clusterName = testObj@meta.data$clusterName)
dfCell <- merge(dfCell, dfCol, by.x = "clusterName", by.y = "clusterVec")
addVec <- dfCell$clusterCols
names(addVec) <- row.names(dfCell)
testObj <- Seurat::AddMetaData(
object = testObj,
metadata = addVec,
"clusterColor"
)
testObj@meta.data[["meta_Region"]] <- "Tumor"
testObj@meta.data[1:20,"meta_Region"] <- "Normal"
params <- scanObjParams(testObj)
seurat2viewer(
obj = testObj,
assay = "RNA",
#slot = "data",
geneSel = NULL,
params = params,
projectName = "pbmc_small_app"
)
Deploy
devtools::install_github("decusinlabore/biologicSC")
library(biologicSC)
library(Seurat)
testObj <- pbmc_small
all.genes <- rownames(testObj)
testObj <- ScaleData(testObj, features = all.genes)
testObj <- RunPCA(testObj, npcs = 3)
testObj <- RunUMAP(testObj, dims = 1:3)
testObj <- FindNeighbors(testObj, dims = 1:3)
testObj <- FindClusters(testObj, resolution = 0.5)
testObj@meta.data[["all"]] <- "all"
testObj@meta.data[["sampleName"]] <- "SampleA"
testObj@meta.data[["sampleColor"]] <- "#009900"
testObj@meta.data[["clusterName"]] <- paste0("Cluster_", as.vector(testObj@meta.data$seurat_clusters))
clusterVec <- unique(testObj@meta.data$clusterName)
clusterCols <- scales::hue_pal()(length(clusterVec))
dfCol <- data.frame(clusterVec, clusterCols)
dfCell <- data.frame(cellID = row.names(testObj@meta.data), clusterName = testObj@meta.data$clusterName)
dfCell <- merge(dfCell, dfCol, by.x = "clusterName", by.y = "clusterVec")
addVec <- dfCell$clusterCols
names(addVec) <- row.names(dfCell)
testObj <- Seurat::AddMetaData(
object = testObj,
metadata = addVec,
"clusterColor"
)
testObj@meta.data[["meta_Region"]] <- "Tumor"
testObj@meta.data[1:20,"meta_Region"] <- "Normal"
params <- scanObjParams(testObj)
seurat2viewer(
obj = testObj,
assay = "RNA",
#slot = "data",
geneSel = NULL,
params = params,
projectName = "pbmc_small_app"
)
setwd("..")
library(shiny)
runApp("pbmc_small_app")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.