#' CoFESNARX
#'
#' \code{CoFESNARX} returns a compiled NARX model via Keras
#'
#' This function takes target variable series, exogenous variables series, and the number of desired
#' lags for each group respectively and then returns the requested lag series for each in a single
#' data set. Ydelay/Xdelay are vectors that holds the consecutive delays required for the target
#' variable/exogenous series (ex 1:3 or 4:5)
#'
#' @param y,x numeric vectors for the target and exegenous variables
#' @param dim numberic vector for the dimension of the deisred netowrk
#' @param dr_o drop out rate used between hidden layers
#' @param KL2 the L2 kernel_regularizerregularization factor for hidden layer kernal regularization
#' @param BL2 the L2 bias_regularizer regularization factor for hidden layer bias regularization
#' @param act activation funciton used, if not specified 'relu' used
#' @return returns the target combined with the original and lagged exegenous
#' variables in one database.
#'
#'
#' @export
CoFESNARX <- function(x, y, dim, KL2 = .01, BL2 = .01, dr_o = 0, act = 'relu'){
# This function determine the size of the model and builds the same model with
# different number of requested nodes. Dim should be entered using c() i.e.
# c(10,5) for a two hidden layers with 10 nodes in the first layer and 5
# nodes in the second.
model <- keras::keras_model_sequential()
if (length(dim)==1) {
model %>%
keras::layer_dense(units = dim[1], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2),
input_shape = ncol(x)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = 1, activation = 'linear',
kernel_regularizer= keras::regularizer_l2(l = KL2))
} else if (length(dim)==2) {
model %>%
keras::layer_dense(units = dim[1], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2),
input_shape = ncol(x)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[2], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = 1, activation = 'linear',
kernel_regularizer= keras::regularizer_l2(l = KL2))
} else if (length(dim)==3) {
model %>%
keras::layer_dense(units = dim[1], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2),
input_shape = ncol(x)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[2], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[3], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = 1, activation = 'linear',
kernel_regularizer= keras::regularizer_l2(l = KL2))
} else if (length(dim)==4) {
model %>%
keras::layer_dense(units = dim[1], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2),
input_shape = ncol(x)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[2], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[3], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[4], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = 1, activation = 'linear',
kernel_regularizer= keras::regularizer_l2(l = KL2))
} else if (length(dim)==5) {
model %>%
keras::layer_dense(units = dim[1], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2),
input_shape = ncol(x)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[2], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[3], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[4], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[5], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = 1, activation = 'linear',
kernel_regularizer= keras::regularizer_l2(l = KL2))
} else if (length(dim)==6) {
model %>%
keras::layer_dense(units = dim[1], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2),
input_shape = ncol(x)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[2], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[3], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[4], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[5], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[6], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = 1, activation = 'linear',
kernel_regularizer= keras::regularizer_l2(l = KL2))
} else if (length(dim)==7) {
model %>%
keras::layer_dense(units = dim[1], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2),
input_shape = ncol(x)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[2], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[3], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[4], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[5], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[6], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[7], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = 1, activation = 'linear',
kernel_regularizer= keras::regularizer_l2(l = KL2))
} else if (length(dim)==8) {
model %>%
keras::layer_dense(units = dim[1], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2),
input_shape = ncol(x)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[2], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[3], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[4], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[5], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[6], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[7], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[8], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = 1, activation = 'linear',
kernel_regularizer= keras::regularizer_l2(l = KL2))
} else if (length(dim)==9) {
model %>%
keras::layer_dense(units = dim[1], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2),
input_shape = ncol(x)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[2], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[3], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[4], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[5], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[6], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[7], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[8], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[9], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = 1, activation = 'linear',
kernel_regularizer= keras::regularizer_l2(l = KL2))
} else if (length(dim)==10) {
model %>%
keras::layer_dense(units = dim[1], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2),input_shape = ncol(x)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[2], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[3], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[4], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[5], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[6], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[7], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[8], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[9], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[10], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = 1, activation = 'linear',
kernel_regularizer= keras::regularizer_l2(l = KL2))
} else if (length(dim)==11) {
model %>%
keras::layer_dense(units = dim[1], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2),
input_shape = ncol(x)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[2], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[3], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[4], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[5], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[6], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[7], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[8], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[9], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[10], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[11], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = 1, activation = 'linear',
kernel_regularizer= keras::regularizer_l2(l = KL2))
} else if (length(dim)==12) {
model %>%
keras::layer_dense(units = dim[1], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2),
input_shape = ncol(x)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[2], activation =
act, kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[3], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[4], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[5], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[6], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[7], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[8], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[9], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[10], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[11], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[12], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = 1, activation = 'linear',
kernel_regularizer= keras::regularizer_l2(l = KL2))
} else if (length(dim)==13) {
model %>%
keras::layer_dense(units = dim[1], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2),
input_shape = ncol(x)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[2], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[3], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[4], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[5], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[6], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[7], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[8], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[9], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[10], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[11], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[12], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[13], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = 1, activation = 'linear',
kernel_regularizer= keras::regularizer_l2(l = KL2))
} else if (length(dim)==14) {
model %>%
keras::layer_dense(units = dim[1], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2),
input_shape = ncol(x)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[2], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[3], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[4], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[5], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[6], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[7], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[8], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[9], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[10], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[11], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[12], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[13], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[14], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = 1, activation = 'linear',
kernel_regularizer= keras::regularizer_l2(l = KL2))
} else if (length(dim)==15) {
model %>%
keras::layer_dense(units = dim[1], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2),input_shape = ncol(x)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[2], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[3], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[4], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[5], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[6], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[7], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[8], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[9], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[10], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[11], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[12], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[13], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[14], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[15], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = 1, activation = 'linear',
kernel_regularizer= keras::regularizer_l2(l = KL2))
} else if (length(dim)==16) {
model %>%
keras::layer_dense(units = dim[1], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2),
input_shape = ncol(x)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[2], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[3], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[4], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[5], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[6], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[7], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[8], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[9], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[10], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[11], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[12], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[13], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[14], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[15], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[16], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = 1, activation = 'linear',
kernel_regularizer= keras::regularizer_l2(l = KL2))
} else if (length(dim)==17) {
model %>%
keras::layer_dense(units = dim[1], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2),
input_shape = ncol(x)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[2], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[3], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[4], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[5], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[6], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[7], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[8], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[9], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[10], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[11], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[12], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[13], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[14], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[15], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[16], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[17], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = 1, activation = 'linear',
kernel_regularizer= keras::regularizer_l2(l = KL2))
} else if (length(dim)==18) {
model %>%
keras::layer_dense(units = dim[1], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2),input_shape = ncol(x)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[2], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[3], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[4], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[5], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[6], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[7], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[8], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[9], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[10], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[11], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[12], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[13], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[14], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[15], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[16], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[17], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[18], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = 1, activation = 'linear',
kernel_regularizer= keras::regularizer_l2(l = KL2))
} else if (length(dim)==19) {
model %>%
keras::layer_dense(units = dim[1], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2),
input_shape = ncol(x)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[2], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[3], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[4], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[5], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[6], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[7], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[8], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[9], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[10], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[11], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[12], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[13], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[14], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[15], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[16], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[17], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[18], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[19], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = 1, activation = 'linear',
kernel_regularizer= keras::regularizer_l2(l = KL2))
} else if (length(dim)==20) {
model %>%
keras::layer_dense(units = dim[1], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2),
input_shape = ncol(x) ) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[2], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[3], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[4], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[5], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[6], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[7], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[8], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[9], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[10], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[11], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[12], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[13], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[14], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[15], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[16], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[17], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[18], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[19], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = dim[20], activation = act,
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2)) %>%
keras::layer_dropout(rate = dr_o) %>%
keras::layer_dense(units = 1, activation = 'linear',
kernel_regularizer= keras::regularizer_l2(l = KL2),
bias_regularizer = keras::regularizer_l2(l = BL2))
} else {
print("Your specification is too large")}
summary(model)
return(model)
}
# Activations:
#'softmax', 'elu', 'softplus', 'softsign', 'relu', 'tanh', 'sigmoid', 'hard_sigmoid', linear'
# Optimizers
#SGD(lr = 0.01, momentum = 0, decay = 0, nesterov = FALSE, clipnorm = -1, clipvalue = -1)
#RMSprop(lr = 0.001, rho = 0.9, epsilon = 1e-08, decay = 0,clipnorm = -1, clipvalue = -1)
#Adagrad(lr = 0.01, epsilon = 1e-08, decay = 0, clipnorm = -1,clipvalue = -1)
#Adadelta(lr = 1, rho = 0.95, epsilon = 1e-08, decay = 0,clipnorm = -1, clipvalue = -1)
#Adam(lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08, decay = 0, clipnorm = -1, clipvalue = -1)
#Adamax(lr = 0.002, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08, decay = 0, clipnorm = -1, clipvalue = -1)
#Nadam(lr = 0.002, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08,schedule_decay = 0.004, clipnorm = -1, clipvalue = -1)
## Parameters:
#lr float >= 0. Learning rate.
#momentum float >= 0. Parameter updates momentum.
#decay float >= 0. Learning rate decay over each update.
#nesterov boolean. Whether to apply Nesterov momentum.
#clipnorm float >= 0. Gradients will be clipped when their L2 norm exceeds this value. Set to -1 to disable.
#clipvalue float >= 0. Gradients will be clipped when their absolute value exceeds this value. Set to -1 to disable.
#rho float >= 0 to be used in RMSprop
#epsilon float >= 0. Fuzz factor.
#beta_1 float, 0 < beta < 1. Generally close to 1.
#beta_2 float, 0 < beta < 1. Generally close to 1.
#schedule_decay float >= 0. Learning rate decay over each schedule in Nadam.
## Loss Functions
#loss_binary_crossentropy(
# y_true,
# y_pred,
# from_logits = FALSE,
# label_smoothing = 0,
# axis = -1L,
# ...,
# reduction = "auto",
# name = "binary_crossentropy"
#)
#loss_categorical_crossentropy(
#y_true,
#y_pred,
#from_logits = FALSE,
#label_smoothing = 0L,
#axis = -1L,
#...,
#reduction = "auto",
#name = "categorical_crossentropy"
#)
#loss_categorical_hinge(
# y_true,
# y_pred,
# ...,
# reduction = "auto",
# name = "categorical_hinge"
#)
#loss_cosine_similarity(
# y_true,
# y_pred,
# axis = -1L,
# ...,
# reduction = "auto",
# name = "cosine_similarity"
#)
#loss_hinge(y_true, y_pred, ..., reduction = "auto", name = "hinge")
#
#loss_huber(
# y_true,
# y_pred,
# delta = 1,
# ...,
# reduction = "auto",
# name = "huber_loss"
#)
#loss_kullback_leibler_divergence(
# y_true,
# y_pred,
# ...,
# reduction = "auto",
# name = "kl_divergence"
#)
#loss_kl_divergence(
# y_true,
# y_pred,
# ...,
# reduction = "auto",
# name = "kl_divergence"
#)
#loss_logcosh(y_true, y_pred, ..., reduction = "auto", name = "log_cosh")
#loss_mean_absolute_error(
# y_true,
# y_pred,
# ...,
# reduction = "auto",
# name = "mean_absolute_error"
#)
#loss_mean_absolute_percentage_error(
# y_true,
# y_pred,
# ...,
# reduction = "auto",
# name = "mean_absolute_percentage_error"
#)
#loss_mean_squared_error(
# y_true,
# y_pred,
# ...,
# reduction = "auto",
# name = "mean_squared_error"
#)
#loss_mean_squared_logarithmic_error(
# y_true,
# y_pred,
# ...,
# reduction = "auto",
# name = "mean_squared_logarithmic_error"
#)
#loss_poisson(y_true, y_pred, ..., reduction = "auto", name = "poisson")
#loss_sparse_categorical_crossentropy(
# y_true,
#y_pred,
#from_logits = FALSE,
# axis = -1L,
# ...,
#reduction = "auto",
#name = "sparse_categorical_crossentropy"
#)
#loss_squared_hinge(
# y_true,
# y_pred,
# ...,
# reduction = "auto",
# name = "squared_hinge"
# )
# Keras (>=2.2.5.0)
# dplyr (>=1.0.7)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.