knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(neha)
# Simulate data for NEHA # basic data parameters cascades <- 50 nodes <- 20 times <- 30 nties <- 25 # generate dataframe time <- sort(rep(1:times,nodes)) node <- paste("n",as.character(rep(1:nodes,times)),sep="") intercept <- rep(1,length(time)) covariate <- runif(length(time))-2 data_for_sim <- data.frame( time, node, intercept, covariate, stringsAsFactors = FALSE )
# regression parameters beta <- cbind(c(-2.5,.25)) rownames(beta) <- c("intercept","covariate") # generate network effects possible_ties <- rbind(t(combn(1:nodes,2)),t(combn(1:nodes,2))[,c(2,1)]) possible_ties <- paste( paste("n",possible_ties[,1],sep=""), paste("n",possible_ties[,2],sep=""), sep="_" ) ties <- sample(possible_ties,nties) gamma <- cbind(rep(1.5,length(ties))) rownames(gamma) <- ties # initiate simulated data object simulated_data <- NULL # generate the data one cascade at a time for(c in 1:cascades) { simulated_cascade <- simulate_neha_discrete( x=data_for_sim, node="node", time="time", beta=beta, gamma=gamma, a=-6 ) simulated_cascade <- data.frame( simulated_cascade, cascade=c, stringsAsFactors=FALSE ) simulated_data <- rbind(simulated_data, simulated_cascade) } # infer edges neha_results <- neha( simulated_data, node="node", time="time", event="event", cascade="cascade", covariates="covariate", ncore=1 ) # estimate NEHA logistic regression neha_estimate <- glm( neha_results$combined_formula, data=neha_results$data_for_neha, family=binomial ) summary(neha_estimate)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.