meta.lm.gen | R Documentation |
This function estimates the intercept and slope coefficients in a meta-regression model where the dependent variable is any type of effect size. The estimates are OLS estimates with robust standard errors that accomodate residual heteroscedasticity.
meta.lm.gen(alpha, est, se, X)
alpha |
alpha level for 1-alpha confidence |
est |
vector of parameter estimates |
se |
vector of standard errors |
X |
matrix of predictor values |
Returns a matrix. The first row is for the intercept with one additional row per predictor. The matrix has the following columns:
Estimate - OLS estimate
SE - standard error
z - z-value
p - p-value
LL - lower limit of the confidence interval
UL - upper limit of the confidence interval
est <- c(4.1, 4.7, 4.9, 5.7, 6.6, 7.3)
se <- c(1.2, 1.5, 1.3, 1.8, 2.0, 2.6)
x1 <- c(10, 20, 30, 40, 50, 60)
x2 <- c(1, 1, 1, 0, 0, 0)
X <- matrix(cbind(x1, x2), 6, 2)
meta.lm.gen(.05, est, se, X)
# Should return:
# Estimate SE z p LL UL
# b0 3.5333333 4.37468253 0.80767766 0.419 -5.0408869 12.1075535
# b1 0.0600000 0.09058835 0.66233679 0.508 -0.1175499 0.2375499
# b2 -0.1666667 2.81139793 -0.05928249 0.953 -5.6769054 5.3435720
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.