Packages and settings

library(tidyverse)
library(BASSr)
library(sf)

Introduction

The goal of this vignette is provide a guide from which to work from when implementing BASS into a survey design. There currently are quite a few peculiarities in the script and the workflow should elucidate them a bit more.

Step 1. Define your area of interest

For now I'll work with the package sf's nc layer. You will need to have the sf package installed (install.packages('sf')). We need a projection that usess metres instead of lat/lon so you may have to transform your spatial objects.

nc <- st_read(system.file("shape/nc.shp", package="sf")) %>% 
  st_transform(crs = '+proj=utm +zone=17 +ellps=GRS80 +units=m +no_defs ',check=T, partial=F)

nc_coords <- st_centroid(nc) %>% 
  st_coordinates %>% 
  as_tibble

nc_for_survey <- bind_cols(nc, nc_coords) %>% 
  filter(X < 600000)

We will just survey the western half of the state for simplicity (shown in grey).

ggplot(nc) + geom_sf() + geom_sf(data = nc_for_survey, fill = 'grey')

For today, lets aim to survey North Carolina using 1km sample units and 34km study areas.

Step 2. Create hexagons

Often this is most usefully done outside of R, with habitat and costs incorporated into the hexagons, but I'll run through it here to detail how the data should be formatted.

SA_SU <- create_hexes(landscape = nc_for_survey,
                      study_area_size = 100000, 
                      units = 'ha', 
                      study_unit_size = 100, output = 'all' )
ggplot(SA_SU$large) + 
  geom_sf(data = nc) + 
  geom_sf(fill = 'grey', alpha = 0.5) 

Here is an example study area. Not all of the study area is within North Carolina (pink) and so we will not deploy here.

su_ex <- st_filter(SA_SU$small, SA_SU$large[16,])

ggplot() +  
  geom_sf(data = nc, fill = 'lightpink') +
  geom_sf(data = SA_SU$large[16,], fill = NA) +
  geom_sf(data = su_ex, fill = NA) +
  coord_sf(xlim =st_bbox(SA_SU$large[16,])[c(1,3)], ylim = st_bbox(SA_SU$large[16,])[c(2,4)])
st_area(SA_SU$large[16,])

pHA_region <- tibble(lc = 1:18) %>% 
  mutate(pHA_region = runif(18),
         pHA_region = pHA_region/sum(pHA_region),
         varbeta = pHA_region*0.2)
# varbeta <- 0.2
estBetaParams <- function(mu, var) {
  alpha <- ((1 - mu) / var - 1 / mu) * mu ^ 2
  beta <- alpha * (1 / mu - 1)
  return(params = list(alpha = alpha, beta = beta))
}

beta_values <- estBetaParams(pHA_region$pHA_region, pHA_region$varbeta)
SA_LC <- 
expand_grid(StudyAreaID = unique(SA_SU$large$StudyAreaID), lc = 1:18) %>% 
  left_join(pHA_region, by = 'lc') %>% 
  mutate(LandCover = glue::glue("LC{stringr::str_pad(lc,width = 2, side = 'left', pad = 0 )}"),
         pha = rbeta(nrow(.),beta_values$alpha,beta_values$beta)) %>% 
         # a = (pHA_region**2)*((1-pHA_region)/(varbeta)- (1/pHA_region)),
         # pha = rbeta(nrow(.),a,a*(1/pHA_region-1))) %>% 
  group_by(StudyAreaID) %>% 
  mutate(ha = pha/sum(pha)*1e9*.0001,
         pha = ha/sum(ha)) %>% ungroup


dhope/BASSr documentation built on April 12, 2024, 9:54 p.m.