simulate_data <- function(ntimesteps, intercept, slope_ratio, sd_ratio) {
slope <- slope_ratio * intercept
sd_error = sd_ratio * mean(intercept, (intercept + (ntimesteps * slope)))
vals <- intercept + ((1:ntimesteps) * slope) + rnorm(ntimesteps, sd = sd_error)
if(any(vals <= 0)) {
vals [ which(vals <= 0)] <- 1
}
return(data.frame(
time = 1:ntimesteps,
value = vals,
true_slope = slope,
true_slope_ratio = slope_ratio,
true_error_ratio = sd_ratio,
true_error = sd_error,
true_intercept = intercept
))
}
set.seed(1977)
#one_sim <- simulate_data(25, runif(1, 600, 900), runif(1, -.0007, .0007), sd_ratio = .015)
one_sim <- simulate_data(25,600, -.03, sd_ratio = .25)
ggplot(one_sim, aes(time, value)) +
geom_point() +
theme_bw() +
scale_y_continuous(limits = c(0, NA))
For a given response vector (in this case, a timeseries \~ year)
one_sim$adj_value = one_sim$value / mean(one_sim$value)
one_lm <- lm(adj_value ~ time, data = one_sim)
one_sim$est <- predict(one_lm)
one_sim$abs_resid <- abs(resid(one_lm))
ggplot(one_sim, aes(time, adj_value)) +
geom_line() +
geom_line(aes(time, est), color = "pink") +
theme_bw() +
scale_y_continuous(limits = c(0, NA)) +
geom_point(aes(time, abs_resid), color = "red")
mean(one_sim$abs_resid)
## [1] 0.3195092
coefficients(one_lm)
## (Intercept) time
## 1.72565124 -0.05581933
flat_low <- replicate(n = 10, expr = simulate_data(25, runif(1, 600, 900), runif(1, -.0007, .0007), sd_ratio = .015), simplify = F)
flat_low <- bind_rows(flat_low, .id = "rep") %>%
mutate(type = "flat_low",
rep = as.numeric(rep))
flat_low2 <- replicate(n = 10, expr = simulate_data(25, runif(1, 30000, 40000), runif(1, -.0007, .0007), sd_ratio = .015), simplify = F)
flat_low2 <- bind_rows(flat_low2, .id = "rep") %>%
mutate(type = "flat_low",
rep = as.numeric(rep) + 10)
flat_low <- bind_rows(flat_low, flat_low2)
ggplot(flat_low, aes(time, value, group = rep)) +
geom_line() + theme_bw()
trend_low <- replicate(n = 10, expr = simulate_data(25, runif(1, 600, 900), sample(c(-1, 1), size = 1) * runif(1, .01, .02), sd_ratio = .015), simplify = F)
trend_low <- bind_rows(trend_low, .id = "rep") %>%
mutate(type = "trend_low",
rep = as.numeric(rep))
trend_low2 <- replicate(n = 10, expr = simulate_data(25, runif(1, 30000, 40000), sample(c(-1, 1), size = 1) * runif(1, .01, .02), sd_ratio = .015), simplify = F)
trend_low2 <- bind_rows(trend_low2, .id = "rep") %>%
mutate(type = "trend_low",
rep = as.numeric(rep) + 10)
trend_low <- bind_rows(trend_low, trend_low2)
ggplot(trend_low, aes(time, value, group = rep)) +
geom_line() + theme_bw()
flat_high <- replicate(n = 10, expr = simulate_data(25, runif(1, 600, 900), runif(1, -.0007, .0007), sd_ratio = .15), simplify = F)
flat_high <- bind_rows(flat_high, .id = "rep") %>%
mutate(type = "flat_high",
rep = as.numeric(rep))
flat_high2 <- replicate(n = 10, expr = simulate_data(25, runif(1, 30000, 40000), runif(1, -.0007, .0007), sd_ratio = .15), simplify = F)
flat_high2 <- bind_rows(flat_high2, .id = "rep") %>%
mutate(type = "flat_high",
rep = as.numeric(rep) + 10)
flat_high <- bind_rows(flat_high, flat_high2)
ggplot(flat_high, aes(time, value, group = rep)) +
geom_line() + theme_bw()
trend_high <- replicate(n = 10, expr = simulate_data(25, runif(1, 600, 900), sample(c(-1, 1), size = 1) * runif(1, .01, .02), sd_ratio = .15), simplify = F)
trend_high <- bind_rows(trend_high, .id = "rep") %>%
mutate(type = "trend_high",
rep = as.numeric(rep))
trend_high2 <- replicate(n = 10, expr = simulate_data(25, runif(1, 30000, 40000), sample(c(-1, 1), size = 1) * runif(1, .01, .02), sd_ratio = .15), simplify = F)
trend_high2 <- bind_rows(trend_high2, .id = "rep") %>%
mutate(type = "trend_high",
rep = as.numeric(rep) + 10)
trend_high <- bind_rows(trend_high, trend_high2)
ggplot(trend_high, aes(time, value, group = rep)) +
geom_line() + theme_bw()
all_sims <- bind_rows(flat_low, flat_high, trend_low, trend_high)
all_sims <- mutate(all_sims, rep_trend = paste0(rep, type),
currency_scale = rep > 10)
ggplot(all_sims, aes(time, value, group = rep_trend, color = type)) +
geom_line() + theme_bw()
ggplot(all_sims, aes(time, value, group = rep_trend, color = type)) +
geom_line() + theme_bw() + facet_wrap(vars(currency_scale), scales = "free_y")
lm_fuzz <- function(a_vector) {
this_ts <- data.frame(time = 1:length(a_vector), value = a_vector / mean(a_vector))
this_lm <- lm(value ~ time, this_ts)
this_slope <- coefficients(this_lm)[["time"]]
this_p <- anova(this_lm)[1,5]
this_r2 <- summary(this_lm)$r.squared
this_est <- predict(this_lm)
scaled_ests <- this_est / a_vector
this_resid <- resid(this_lm)
abs_resid <- abs(this_resid)
mean_abs_resid = mean(abs_resid)
return(data.frame(
slope = this_slope,
p = this_p,
r2 = this_r2,
cv = sd(a_vector) / mean(a_vector),
mean_abs_resid = mean_abs_resid
))
}
lm_summaries <- list()
for(i in 1:length(unique(all_sims$rep_trend))) {
this_df <- filter(all_sims, rep_trend == unique(all_sims$rep_trend)[i])
lm_summaries[[i]] <- lm_fuzz(this_df$value)
lm_summaries[[i]]$rep_trend = this_df$rep_trend[1]
lm_summaries[[i]]$type = this_df$type[1]
lm_summaries[[i]]$currency_scale = this_df$currency_scale[1]
}
lm_summaries <- bind_rows(lm_summaries)
ggplot(lm_summaries, aes(slope, mean_abs_resid, color = type, shape = currency_scale)) +
geom_point() +
theme_bw()
ggplot(lm_summaries, aes(slope, mean_abs_resid, color = type, shape = p < .05)) +
geom_point() +
theme_bw()
datasets <- data.frame(
dataset_name = c("rockies",
"hartland",
"alberta",
"cochise_birds",
"salamonie",
"tilden",
"gainesville",
"gainesville_nooutlier",
"portal_rats"),
rtrg_code = c("rtrg_304_17",
"rtrg_102_18",
"rtrg_105_4",
"rtrg_133_6",
"rtrg_19_35",
"rtrg_172_14",
"rtrg_113_25",
"rtrg_113_25",
NA)
)
all_datasets <- list()
for(i in 1:nrow(datasets)) {
if(datasets$dataset_name[i] != "portal_rats") {
ibd <- readRDS(paste0("C:\\Users\\diaz.renata\\Documents\\GitHub\\BBSsize\\analysis\\isd_data\\ibd_isd_bbs_", datasets$rtrg_code[i], ".Rds"))
sv <- ibd %>%
group_by(year) %>%
summarize(richness = length(unique(id)),
abundance = dplyr::n(),
biomass = sum(ind_size),
energy = sum(ind_b)) %>%
ungroup() %>%
mutate(mean_energy = energy / abundance,
mean_mass = biomass/abundance,
site_name = datasets$dataset_name[i])
if(datasets$dataset_name[i] == "gainesville_nooutlier") {
sv <- filter(sv, abundance < 3000)
}
} else {
individual_rats <- portalr::summarise_individual_rodents(clean = TRUE, type = "Granivores", time = "date", length = "Longterm")
ibd <- individual_rats %>%
filter(year %in% c(1978:2002), !is.na(wgt), treatment == "control") %>%
mutate(six_mo = ifelse(month > 6, .5, 0)) %>%
mutate(year_six_mo = (year + six_mo)) %>%
mutate(bmr = 5.69 * (wgt ^ .75)) %>%
select(year_six_mo, species, wgt, bmr) %>%
rename(year= year_six_mo,
id = species,
ind_size = wgt,
ind_b = bmr) %>%
mutate(id = as.character(id))
sv <- ibd %>%
group_by(year) %>%
summarize(richness = length(unique(id)),
abundance = dplyr::n(),
biomass = sum(ind_size),
energy = sum(ind_b)) %>%
ungroup() %>%
mutate(mean_energy = energy / abundance,
mean_mass = biomass/abundance,
site_name = datasets$dataset_name[i]) %>%
mutate(time = row_number())
}
all_datasets[[i]] <- sv
}
## Loading in data version 2.18.0
all_datasets <- bind_rows(all_datasets)
gridExtra::grid.arrange(grobs = list(
ggplot(all_datasets, aes(year, abundance, color = site_name)) +
geom_line() +
theme_bw() +
facet_wrap(vars(site_name), scales = "free", ncol = 1) +
ggtitle("Abundance"
) +
theme(legend.position = "top"),
ggplot(all_datasets, aes(year, energy, color = site_name)) +
geom_line() +
theme_bw() +
facet_wrap(vars(site_name), scales = "free", ncol = 1) +
ggtitle("Energy") +
theme(legend.position = "top")),
ncol = 2
)
fuzzes <- list()
for(i in 1:nrow(datasets)) {
sv <- filter(all_datasets, site_name == datasets$dataset_name[i])
sv_fuzz <- list(
abundance = lm_fuzz(sv$abundance),
energy = lm_fuzz(sv$energy)
)
sv_fuzz <- bind_rows(sv_fuzz, .id = "currency")
sv_fuzz <- mutate(sv_fuzz, site_name = datasets$dataset_name[i])
fuzzes[[i]] <- sv_fuzz
}
fuzzes <- bind_rows(fuzzes)
ggplot(lm_summaries, aes(slope, mean_abs_resid, alpha = p < 0.05)) +
geom_point() +
theme_bw() +
geom_point(data = fuzzes, aes(slope, mean_abs_resid, shape = currency, color = site_name, alpha = p < 0.05), size = 5) +
scale_alpha_discrete(range = c(.3, 1))
## Warning: Using alpha for a discrete variable is not advised.
portal_adj <- filter(all_datasets, site_name == "portal_rats") %>%
mutate(adj_n = abundance / mean(abundance),
adj_e = energy / mean(energy)) %>%
mutate(time = row_number())
portaln_lm <- lm(adj_n ~ time, portal_adj)
plot(predict(portaln_lm))
max(predict(portaln_lm)) / min(predict(portaln_lm))
## [1] 1.865429
portale_lm <- lm(adj_e ~ time, portal_adj)
plot(predict(portale_lm))
max(predict(portale_lm)) / min(predict(portale_lm))
## [1] 1.113866
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.