simulate_data <- function(ntimesteps, intercept, slope, sd_error) {
vals <- intercept + ((1:ntimesteps) * slope) + rnorm(ntimesteps, sd = sd_error)
return(data.frame(
time = 1:ntimesteps,
value = vals,
true_slope = slope,
true_error = sd_error,
true_intercept = intercept
))
}
flat_low <- replicate(n = 10, expr = simulate_data(25, runif(1, 600, 900), runif(1, -.5, .5), sd_error = 10), simplify = F)
flat_low <- bind_rows(flat_low, .id = "rep") %>%
mutate(type = "flat_low")
ggplot(flat_low, aes(time, value, group = rep)) +
geom_line() + theme_bw()
trend_low <- replicate(n = 10, expr = simulate_data(25, runif(1, 600, 900), sample(c(-1, 1), size = 1) * runif(1, 10, 20), sd_error = 10), simplify = F)
trend_low <- bind_rows(trend_low, .id = "rep") %>%
mutate(type = "trend_low")
ggplot(trend_low, aes(time, value, group = rep)) +
geom_line() + theme_bw()
### Non
trending and high error
flat_high <- replicate(n = 10, expr = simulate_data(25, runif(1, 600, 900), runif(1, -.5, .5), sd_error = 50), simplify = F)
flat_high <- bind_rows(flat_high, .id = "rep") %>%
mutate(type = "flat_high")
ggplot(flat_high, aes(time, value, group = rep)) +
geom_line() + theme_bw()
###
Trending and high error
trend_high <- replicate(n = 10, expr = simulate_data(25, runif(1, 600, 900), sample(c(-1, 1), size = 1) * runif(1, 10, 20), sd_error = 50), simplify = F)
trend_high <- bind_rows(trend_high, .id = "rep") %>%
mutate(type = "trend_high")
ggplot(trend_high, aes(time, value, group = rep)) +
geom_line() + theme_bw()
all_sims <- bind_rows(flat_low, flat_high, trend_low, trend_high)
all_sims <- mutate(all_sims, rep_trend = paste0(rep, type))
ggplot(all_sims, aes(time, value, group = rep_trend, color = type)) +
geom_line() + theme_bw()
lm_fuzz <- function(a_vector) {
this_ts <- data.frame(time = 1:length(a_vector), value = a_vector)
this_lm <- lm(value ~ time, this_ts)
this_slope <- coefficients(this_lm)[["time"]]
this_p <- anova(this_lm)[1,5]
this_r2 <- summary(this_lm)$r.squared
this_resid <- resid(this_lm)
this_est <- predict(this_lm)
mean_est <- mean(this_est)
resid_est <- abs(this_resid) / this_est
mean_resid_Est <- mean(resid_est)
return(data.frame(
slope = this_slope,
p = this_p,
r2 = this_r2,
mean_est = mean_est,
mean_resid_est = mean_resid_Est,
cv = sd(a_vector) / mean(a_vector)
))
}
lm_summaries <- list()
for(i in 1:length(unique(all_sims$rep_trend))) {
this_df <- filter(all_sims, rep_trend == unique(all_sims$rep_trend)[i])
lm_summaries[[i]] <- lm_fuzz(this_df$value)
lm_summaries[[i]]$rep_trend = this_df$rep_trend[1]
lm_summaries[[i]]$type = this_df$type[1]
}
lm_summaries <- bind_rows(lm_summaries)
ggplot(lm_summaries, aes(x = abs(slope) / mean_est, y = mean_resid_est, color = type, shape = p < .05)) +
geom_point() + theme_bw()
ggplot(lm_summaries, aes(abs(slope), r2, color = type, shape = p < 0.05)) + geom_point() + theme_bw()
ggplot(lm_summaries, aes(cv, mean_resid_est, color = type)) +
geom_point()
ggplot(lm_summaries, aes(cv, abs(slope), color = type)) +
geom_point()
lm_summaries <- left_join(lm_summaries, select(all_sims, true_slope, true_error, true_intercept, rep_trend))
## Joining, by = "rep_trend"
ggplot(lm_summaries, aes(x = slope, y = true_slope, color = type)) +
geom_point()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.