knitr::opts_chunk$set(echo = FALSE) #knitr::opts_chunk$set(fig.dim = c(5,3)) library(dplyr) library(gratia) library(ggplot2) load_mgcv() ts <- read.csv(here::here("analysis", "from_stories", "results", "ts_w_rescaled_e_100bbs.csv"))
both_change <- read.csv(here::here("analysis", "from_stories", "results", "both_change_5_100bbs.csv")) all_draws <- both_change %>% mutate(rat = end / start) both_summary <- read.csv(here::here("analysis", "from_stories", "results", "both_summary_5_100bbs.csv"))
all_summary <- all_draws %>% group_by(currency, identifier, k) %>% summarize( mean_rat = mean(rat), lower_rat = quantile(rat, prob = .025), upper_rat = quantile(rat, prob = .975) ) %>% ungroup() %>% left_join(both_summary) ggplot(all_summary, aes(x = mean_rat)) + geom_histogram(binwidth = .05) + theme_bw() + facet_wrap(vars(currency), scales = "free", ncol= 1) + geom_vline(xintercept = 1) + geom_vline(xintercept = c(.5, 2), color = "red") + scale_x_log10(n.breaks = 20) + xlab("mean ratio, log") all_summary <- all_summary %>% group_by_all() %>% mutate(over_zero = (((lower_rat - 1) * (upper_rat - 1)) < 0), increasing = all((lower_rat > 1), upper_rat > 1), decreasing = all((lower_rat < 1), upper_rat < 1), doubling = all(lower_rat > 1, upper_rat > 1, mean_rat >= 2), halving = all(lower_rat < 1, upper_rat < 1, mean_rat <= 0.5)) %>% ungroup() ggplot(filter(all_summary, !over_zero), aes(mean_rat))+ geom_histogram(binwidth = .05) + theme_bw() + facet_wrap(vars(currency), scales = "free", ncol = 1) + geom_vline(xintercept = 1) + geom_vline(xintercept = c(.5, 2), color = "red") + scale_x_log10(n.breaks = 20) + xlab("mean ratio, log") all_summary %>% group_by(currency) %>% summarize(ntotal = dplyr::n(), noverzero = sum(over_zero), nincreasing = sum(increasing), ndecreasing = sum(decreasing), ndouble = sum(doubling), nhalf = sum(halving)) ggplot(all_summary, aes(x = mean_rat)) + geom_density() + theme_bw() + facet_wrap(vars(currency), scales = "free", ncol= 1) + geom_vline(xintercept = 1) + geom_vline(xintercept = c(.5, 2), color = "red") + scale_x_log10(n.breaks = 20) + xlab("mean ratio, log") ggplot(filter(all_summary, !over_zero), aes(mean_rat))+ geom_density() + theme_bw() + facet_wrap(vars(currency), scales = "free", ncol= 1) + geom_vline(xintercept = 1) + geom_vline(xintercept = c(.5, 2), color = "red") + scale_x_log10(n.breaks = 20) + xlab("mean ratio, log")
all_summary_wide <- all_summary %>% tidyr::pivot_wider(id_cols = c(identifier, k), names_from = currency, values_from = c(mean_rat, lower_rat, upper_rat))
all_summary_wide <- all_summary_wide %>% group_by_all() %>% mutate(e_n_compare = ifelse( ((lower_rat_abundance < lower_rat_scaled_energy) && (upper_rat_abundance < lower_rat_scaled_energy)), "abund_lower", ifelse( ((lower_rat_abundance > upper_rat_scaled_energy) && (upper_rat_abundance > upper_rat_scaled_energy)), "abund_higher", "overlap" ) ) ) ggplot(all_summary_wide, aes(x = mean_rat_abundance, y = mean_rat_scaled_energy, color = e_n_compare)) + geom_point() + geom_errorbar(aes(ymin = lower_rat_scaled_energy, ymax = upper_rat_scaled_energy)) + geom_errorbarh(aes(xmin = lower_rat_abundance, xmax = upper_rat_abundance)) + theme_bw() + geom_hline(yintercept = 1) + geom_vline(xintercept = 1) + geom_abline(slope = 1, intercept = 0) + theme(legend.position="none") + scale_x_log10() + scale_y_log10() all_summary_wide %>% group_by(e_n_compare) %>% summarize(count = dplyr::n()) e_v_n_resid <- all_summary_wide %>% mutate(ratio = mean_rat_abundance / mean_rat_scaled_energy)
ggplot(e_v_n_resid, aes(ratio)) + geom_histogram(binwidth = .1) + xlab("abundance over energy") + geom_vline(xintercept = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.