knitr::opts_chunk$set(echo = FALSE)
#knitr::opts_chunk$set(fig.dim = c(5,3))

library(dplyr)
library(gratia)
library(ggplot2)
load_mgcv()

ts <- read.csv(here::here("gams", "results", "ts_w_rescaled_e.csv"))
ts_long <- ts %>%
  select(year, abundance, scaled_energy, site_name) %>%
  tidyr::pivot_longer(c(abundance, scaled_energy), names_to = "currency", values_to = "value")

ggplot(ts_long, aes(year, value, color= currency)) +
  geom_line() +
  theme_bw() +
  ggtitle("Actual values")+
  scale_color_viridis_d(end = .8) +
  facet_wrap(vars(site_name), scales = "free")
joint_samples <- read.csv(here::here("gams", "results", "joint_samples_5.csv"))

ggplot(joint_samples, aes(year, mean, color = currency, fill = currency)) +
  geom_line(aes(year, mean)) +
  geom_ribbon(aes(year, ymin = lower, ymax = upper),  alpha = .25) +
  ggtitle(paste0("Fits for energy and abundance, k = ", joint_samples$k[1])) +
  theme_bw() +
  scale_color_viridis_d(end = .8) +
  scale_fill_viridis_d(end = .8) + 
  facet_wrap(vars(identifier), scales = "free")
both_change <- read.csv(here::here("gams", "results", "both_change_5.csv"))
both_summary <- read.csv(here::here("gams", "results", "both_summary_5.csv"))
both_summary_wide <- both_summary %>%
  tidyr::pivot_wider(id_cols = c(identifier, k), names_from = currency, values_from = c(mean_net_proportional, lower_net_proportional, upper_net_proportional))

ggplot(both_summary_wide, aes(x = mean_net_proportional_abundance, y = mean_net_proportional_scaled_energy, color = identifier)) +
  geom_point() +
  geom_errorbar(aes(ymin = lower_net_proportional_scaled_energy,
                    ymax = upper_net_proportional_scaled_energy)) +
  geom_errorbarh(aes(xmin = lower_net_proportional_abundance,
                     xmax = upper_net_proportional_abundance)) +
  theme_bw() +
  geom_hline(yintercept = 0) +
  geom_vline(xintercept = 0) + 
  geom_abline(slope = 1, intercept = 0)
both_ichange_summary <- read.csv(here::here("gams", "results", "both_ichange_summary_5.csv"))
ggplot(both_ichange_summary, aes(year, mean_ichange_proportional, color = currency, fill = currency)) +
  geom_line(aes(year, mean_ichange_proportional)) +
  geom_ribbon(aes(year, ymin = lower_ichange_proportional, ymax = upper_ichange_proportional),  alpha = .25) +
  theme_bw() +
  scale_color_viridis_d(end = .8) +
  scale_fill_viridis_d(end = .8) +
  geom_hline(yintercept = 0) +
  facet_wrap(vars(identifier), scales = "free_x") +
  ylab("f' / f")


both_ichange_ts_summary <-read.csv(here::here("gams", "results", "both_ichange_ts_summary_5.csv"))

change_together <- left_join(both_change, both_ichange_ts_summary)

lwr <- function(x) {
  quantile(x, probs = .025)
}
upr <- function(x) {
  quantile(x, probs = .975)
}

change_together_summary <- change_together %>%
  group_by(currency, identifier) %>%
  summarize_at(.vars = c("net_proportional", "mean_abs_ichange_over_ts"),
               .funs = c(mean = mean, upr = upr, lwr = lwr))

ggplot(change_together_summary, aes(net_proportional_mean, mean_abs_ichange_over_ts_mean, color = currency)) +
  geom_label(aes(label = identifier)) +  
  scale_color_viridis_d(end = .8) +
  theme_bw() +
  geom_vline(xintercept = 0)
ggplot(both_change, aes(net_proportional,color = identifier, fill = identifier)) +
  geom_density(alpha = .4) +
  facet_wrap(vars(currency), scales = "free") +
  theme_bw() +
  geom_vline(xintercept = 0)


ggplot(both_summary, aes(x = mean_net_proportional)) +
  geom_histogram() +
  theme_bw() +
  facet_wrap(vars(currency), scales = "free") +
  geom_vline(xintercept = 0)


ggplot(both_ichange_ts_summary, aes(mean_abs_ichange_over_ts, color = identifier, fill = identifier)) +
  geom_density(alpha = .4) +
  facet_wrap(vars(currency)) +
  theme_bw() +
  geom_vline(xintercept = 0)

ggplot(change_together, aes(net_proportional, mean_abs_ichange_over_ts, color = identifier, shape = currency)) +
  geom_point(alpha = .5) 


diazrenata/BBStrends documentation built on March 10, 2021, 11:23 p.m.