knitr::opts_chunk$set(echo = FALSE) #knitr::opts_chunk$set(fig.dim = c(5,3)) library(dplyr) library(gratia) library(ggplot2) load_mgcv() ts <- read.csv(here::here("analysis", "from_stories", "results", "ts_w_rescaled_e_100bbs.csv"))
set.seed(1977) max_to_plot = 16 ones_to_plot <- unique(ts$site_name)[sample.int(n = length(unique(ts$site_name)), size = max_to_plot, replace = F)] ts_long <- ts %>% select(year, abundance, scaled_energy, site_name) %>% tidyr::pivot_longer(c(abundance, scaled_energy), names_to = "currency", values_to = "value") ggplot(filter(ts_long, site_name %in% ones_to_plot), aes(year, value, color= currency)) + geom_line() + theme_bw() + ggtitle("Actual values")+ scale_color_viridis_d(end = .8) + facet_wrap(vars(site_name), scales = "free")
joint_samples <- read.csv(here::here("analysis", "from_stories", "results", "joint_samples_5_100bbs.csv")) ggplot(filter(joint_samples, identifier %in% ones_to_plot), aes(year, mean, color = currency, fill = currency)) + geom_line(aes(year, mean)) + geom_ribbon(aes(year, ymin = lower, ymax = upper), alpha = .25) + ggtitle(paste0("Fits for energy and abundance, k = ", joint_samples$k[1])) + theme_bw() + scale_color_viridis_d(end = .8) + scale_fill_viridis_d(end = .8) + facet_wrap(vars(identifier), scales = "free")
both_change <- read.csv(here::here("analysis", "from_stories", "results", "both_change_5_100bbs.csv"))
both_summary <- read.csv(here::here("analysis", "from_stories", "results", "both_summary_5_100bbs.csv")) ggplot(both_summary, aes(x = mean_net_proportional)) + geom_histogram(binwidth = .1) + theme_bw() + facet_wrap(vars(currency), scales = "free") + geom_vline(xintercept = 0) both_summary <- both_summary %>% group_by_all() %>% mutate(over_zero = ((lower_net_proportional * upper_net_proportional) < 0), increasing = all((lower_net_proportional > 0), upper_net_proportional > 0), decreasing = all((lower_net_proportional < 0), upper_net_proportional < 0), doubling = all(lower_net_proportional > 0, upper_net_proportional > 0, mean_net_proportional >= 1), halving = all(lower_net_proportional < 0, upper_net_proportional < 0, mean_net_proportional <= -.5)) %>% ungroup() ggplot(filter(both_summary, !over_zero), aes(mean_net_proportional)) + geom_histogram(binwidth = .1) + facet_wrap(vars(currency)) + theme_bw() both_summary %>% group_by(currency) %>% summarize(ntotal = dplyr::n(), noverzero = sum(over_zero), nincreasing = sum(increasing), ndecreasing = sum(decreasing), ndouble = sum(doubling), nhalf = sum(halving)) both_summary %>% select(identifier, currency, mean_net_proportional, over_zero, increasing, decreasing) %>% tidyr::pivot_longer(c(over_zero, increasing, decreasing), names_to = "description", values_to = "tf") %>% filter(tf) %>% select(-tf) %>% group_by(currency, description) %>% summarize(mean_shift = mean(mean_net_proportional))
both_summary_wide <- both_summary %>% tidyr::pivot_wider(id_cols = c(identifier, k), names_from = currency, values_from = c(mean_net_proportional, lower_net_proportional, upper_net_proportional)) ggplot(both_summary_wide, aes(x = mean_net_proportional_abundance, y = mean_net_proportional_scaled_energy, color = identifier)) + geom_point() + geom_errorbar(aes(ymin = lower_net_proportional_scaled_energy, ymax = upper_net_proportional_scaled_energy)) + geom_errorbarh(aes(xmin = lower_net_proportional_abundance, xmax = upper_net_proportional_abundance)) + theme_bw() + geom_hline(yintercept = 0) + geom_vline(xintercept = 0) + geom_abline(slope = 1, intercept = 0) + theme(legend.position="none") ggplot(both_summary_wide, aes(x = mean_net_proportional_abundance, y = mean_net_proportional_scaled_energy, color = identifier)) + geom_point() + geom_errorbar(aes(ymin = lower_net_proportional_scaled_energy, ymax = upper_net_proportional_scaled_energy)) + geom_errorbarh(aes(xmin = lower_net_proportional_abundance, xmax = upper_net_proportional_abundance)) + theme_bw() + geom_hline(yintercept = 0) + geom_vline(xintercept = 0) + geom_abline(slope = 1, intercept = 0) + theme(legend.position="none") + xlim(-1, 1.5) + ylim(-1,1.5)
e_v_n_resid <- both_summary_wide %>% mutate(resid = mean_net_proportional_abundance - mean_net_proportional_scaled_energy)
ggplot(e_v_n_resid, aes(resid)) + geom_histogram(binwidth = .1) + xlab("abundance minus energy") ggplot(e_v_n_resid, aes(mean_net_proportional_abundance, resid)) + geom_point() + ylab("abundance minus energy")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.