many_sims <- read.csv(here::here("analysis", "sims_nounif.csv"))
ln_units <- .2
one_sim <- many_sims %>%
filter(source == "constrained", time_chunk == "eighties", sim == 1) %>%
mutate(species = as.factor(species),
ln_mass = log(wgt),
size_class = ln_units * (floor(ln_mass/ln_units)),
size_class_g = exp(size_class))
one_sim_counts <- one_sim %>%
group_by(species, size_class, size_class_g) %>%
summarize(nind = dplyr::n()) %>%
ungroup() %>%
group_by(species) %>%
mutate(total_ind_species = sum(nind)) %>%
ungroup() %>%
mutate(ind_proportional = nind / total_ind_species)
isd_plot <- ggplot(data = one_sim_counts, aes(x= size_class, y = nind)) +
geom_col() +
theme_bw()
isd_plot
ssd_plot <- ggplot(data = one_sim_counts, aes(x = size_class, y = nind, fill = species)) +
geom_col(alpha = .2, position = "dodge") +
theme_bw() +
scale_fill_viridis_d(end = .8)
ssd_plot
two_species <- one_sim_counts %>%
filter(species %in% c(1, 2))
two_species_plot <- ggplot(one_sim_counts, aes(x = size_class, y = ind_proportional, color = species)) +
geom_point(data = two_species) +
geom_line(data = two_species) +
theme_bw() +
scale_color_viridis_d(end = .8, option = "plasma")
two_species_plot
all_species <- expand.grid(unique(as.numeric(one_sim_counts$species)), unique(as.numeric(one_sim_counts$species))) %>%
rename(sp1 = Var1, sp2 = Var2) %>%
filter(sp1 < sp2) %>%
as.matrix()
expanded <- apply(all_species, MARGIN = 1, FUN = function(sp_vect, sim_counts) return(mutate(filter(sim_counts, as.numeric(species) %in% sp_vect), sp1 = sp_vect[1], sp2 = sp_vect[2])), sim_counts = one_sim_counts)
all_species <- bind_rows(expanded)
all_comb_plots <- ggplot(all_species, aes(x = size_class, y = ind_proportional, color = species)) +
geom_point(data = all_species) +
geom_line(data = all_species) +
theme_bw() +
scale_color_viridis_d(end = .8) +
facet_wrap(vars(sp1, sp2), scales = "free") +
theme(strip.text = element_blank())
all_comb_plots
library(mclust)
## Package 'mclust' version 5.4.5
## Type 'citation("mclust")' for citing this R package in publications.
all_comb <- expand.grid(1:9, 1:9) %>%
filter(Var1 != Var2) %>%
mutate(p = NA)
for(i in 1:nrow(all_comb)) {
sp1 = all_comb[i, 1]
sp2 = all_comb[i, 2]
reference_isd <- filter(one_sim, species == sp1)
reference_density <- densityMclust(reference_isd$wgt, modelNames = "V")
id <- data.frame(wgt = seq(0, floor(1.25 * max(one_sim$wgt)), by = .1),
density = NA)
id$density <- predict(reference_density, newdata = id$wgt)
id$density <- id$density / sum(id$density)
id$wgt = round(id$wgt, digits = 1)
sp2_p <- filter(one_sim, species == sp2) %>%
mutate(wgt = round(wgt, digits = 1)) %>%
left_join(id, by = "wgt")
illust <- ggplot(data = id, aes(x = wgt, y = density)) +
geom_point() +
geom_point(data = sp2_p, aes(x = wgt, y = mean(id$density)), color = "red", alpha = .1) +
geom_point(x = mean(sp2_p$wgt), y = mean(sp2_p$density), color = "green") +
theme_bw() +
ggtitle(mean(sp2_p$density))
print(illust)
all_comb$p[i] <- mean(sp2_p$density)
}
hist(all_comb$p)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.