knitr::opts_chunk$set(echo = F) library(drake) library(sadspace) library(dplyr) library(ggplot2) library(ggpmisc)
sv <- define_statevars() %>% assign_ptable() %>% dplyr::filter(p_table != "none") #di_df <- read.csv(here::here("analysis", "di_dfs.csv"), stringsAsFactors = F) fs_size_dat <- read.csv(here::here("analysis", "fs_size_dat.csv"), stringsAsFactors = F) di_summary_df <- read.csv(here::here("analysis", "di_summary_df.csv"), stringsAsFactors = F)
Here is the range of S and N space covered:
ggplot(sv, aes(s0, n0, color = n0/s0)) + geom_point() + theme_bw() + scale_color_viridis_c(option = "plasma") + theme(legend.position = "top") ggplot(sv, aes(log(s0), log(n0), color = log(n0/s0))) + geom_point() + theme_bw()+ scale_color_viridis_c(option = "plasma")+ theme(legend.position = "top")
Things are generally easier to see on the log axis, so let's stick with that.
Here is how the size of the feasible set varies with S, N, and N/S:
# # fs_size_dat <- di_df %>% # select(s0, n0, nparts, nunique) %>% # distinct() %>% # mutate(log_nparts = log(as.numeric(nparts)), # log_nunique = log(nunique)) ggplot(fs_size_dat, aes(log(s0), log(n0), color =log_nparts)) + geom_point() + theme_bw()+ scale_color_viridis_c(option = "plasma", begin = .1, end = .8)+ theme(legend.position = "top")
This is on a log scale, so up in that right corner is 1.942426e+130.
di_summary_df <- di_summary_df %>% mutate(cv_skew = sd_skew/ mean_skew, cv_simpson = sd_simpson/mean_simpson) ggplot(filter(di_summary_df, !is.infinite(sd_skew), !is.infinite(mean_skew), nparts >2, s0 >= 3), aes(log(s0), log(n0), color = log(cv_skew))) + geom_point() + scale_color_viridis_c() + theme_bw() ggplot(filter(di_summary_df, !is.infinite(sd_simpson), !is.infinite(mean_simpson), nparts >2, s0 >= 2), aes(log(s0), log(n0), color = log(cv_simpson))) + geom_point() + scale_color_viridis_c() + theme_bw()
ggplot(filter(di_summary_df, s0 >= 3, !is.infinite(sd_skew), !is.infinite(mean_skew), nparts > 2), aes(log_nparts, mean_skew, color = (log(s0)))) + geom_point() + theme_bw() + geom_vline(xintercept = 10) + scale_color_viridis_c() ggplot(filter(di_summary_df, s0 >= 3, !is.infinite(sd_skew), !is.infinite(mean_skew), nparts > 2), aes(log_nparts, sd_skew, color = (log(s0)))) + geom_point() + theme_bw() + geom_vline(xintercept = 10) + scale_color_viridis_c() ggplot(filter(di_summary_df, s0 >= 3, !is.infinite(sd_skew), !is.infinite(mean_skew), nparts > 2), aes(log_nparts, cv_skew, color = (log(s0)))) + geom_point() + theme_bw() + geom_vline(xintercept = 10) + scale_color_viridis_c() ggplot(filter(di_summary_df, s0 >= 3, !is.infinite(sd_simpson), !is.infinite(mean_simpson), nparts > 2), aes(log_nparts, mean_simpson, color = (log(s0)))) + geom_point() + theme_bw() + geom_vline(xintercept = 10) + scale_color_viridis_c() ggplot(filter(di_summary_df, s0 >= 3, !is.infinite(sd_simpson), !is.infinite(mean_simpson), nparts > 2), aes(log_nparts, mean_simpson, color = (log(s0)))) + geom_point() + theme_bw() + geom_vline(xintercept = 10) + scale_color_viridis_c() ggplot(filter(di_summary_df, s0 >= 3, !is.infinite(sd_simpson), !is.infinite(mean_simpson), nparts > 2), aes(log_nparts, sd_simpson, color = (log(s0)))) + geom_point() + theme_bw() + geom_vline(xintercept = 10) + scale_color_viridis_c() ggplot(filter(di_summary_df, s0 >= 2, !is.infinite(sd_simpson), !is.infinite(mean_simpson), nparts > 2), aes(log_nparts, cv_simpson,color = (log(s0)))) + geom_point() + theme_bw() + geom_vline(xintercept = 10)+ scale_color_viridis_c()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.