From the help page of the iris data set:
This famous (Fisher's or Anderson's) iris data set gives the measurements in centimeters of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris. The species are Iris setosa, versicolor, and virginica.
The table below shows for each of the iris species the mean value of the colums in the data set.
```{.R #table fun=output_table caption="Mean values for each of the properties for each of the iris species."} aggregate(iris[1:4], iris["Species"], mean)
```{.R #figure fun=output_figure
caption="Relation between sepal length and width for the different iris species."
name="iris" height=6 width=8 units="in" res=150 echo=TRUE}
pal <- hcl.colors(3, "Dark2")
plot(iris$Sepal.Width, iris$Sepal.Length, pch = 20,
col = pal[iris$Species], xlab = "Sepal Width",
ylab = "Sepal Length", bty = 'n', las = 1)
legend("topright", legend = levels(iris$Species),
fill = pal, bty = 'n', border = NA)
library(MASS)
m <- lda(Species ~ Sepal.Width + Sepal.Length, data = iris)
p <- predict(m)
predicted_species <- p$class
table(predicted_species, iris$Species)
This model predicts in round(mean(predicted_species==iris$Species)*100)
{.R}% of the
cases the correct species. However, this is mainly for setosa for the other species the
model predicts the correct species only for
sel<-iris$Species!="setosa";round(100*mean(predicted_species[sel] == iris$Species[sel]))
{.R}% of
the records.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.