inst/examples/iris_copypaste.md

title: An analysis of iris

```{.R results=FALSE echo=FALSE} options(md_formatter = format_copypaste)


Introduction
-------------------------

From the help page of the iris data set:

> This famous (Fisher's or Anderson's) iris data set gives the
> measurements in centimeters of the variables sepal length and
> width and petal length and width, respectively, for 50 flowers
> from each of 3 species of iris.  The species are _Iris setosa_,
> _versicolor_, and _virginica_.


Descriptives
--------------------------

The table below shows for each of the iris species the mean value of the colums in the data set. 

```{.R #table fun=output_table caption="Mean values for each of the properties for each of the iris species."}
aggregate(iris[1:4], iris["Species"], mean)

```{.R #figure fun=output_figure caption="Relation between sepal length and width for the different iris species." name="iris" height=6 width=8 units="in" res=150 echo=TRUE} pal <- hcl.colors(3, "Dark2") plot(iris$Sepal.Width, iris$Sepal.Length, pch = 20, col = pal[iris$Species], xlab = "Sepal Width", ylab = "Sepal Length", bty = 'n', las = 1) legend("topright", legend = levels(iris$Species), fill = pal, bty = 'n', border = NA)




Species prediction
---------------------------------

```{.R}
library(MASS)
m <- lda(Species ~ Sepal.Width + Sepal.Length, data = iris)
p <- predict(m)
predicted_species <- p$class
table(predicted_species, iris$Species)

This model predicts in round(mean(predicted_species==iris$Species)*100){.R}% of the cases the correct species. However, this is mainly for setosa for the other species the model predicts the correct species only for sel<-iris$Species!="setosa";round(100*mean(predicted_species[sel] == iris$Species[sel])){.R}% of the records.

{.R results=FALSE echo=FALSE} options(md_formatter = NULL)



djvanderlaan/tinymarkdown documentation built on March 19, 2023, 11:56 p.m.