variety | R Documentation |
The variety of a collection of multivariate polynomials is the collection of
points at which those polynomials are (simultaneously) equal to 0.
variety
uses Bertini to find this set.
variety(mpolyList, varorder, ...)
mpolyList |
Bertini code as either a character string or function; see examples |
varorder |
variable order (see examples) |
... |
stuff to pass to bertini |
an object of class bertini
if (has_bertini()) { polys <- mp(c( "x^2 - y^2 - z^2 - .5", "x^2 + y^2 + z^2 - 9", ".25 x^2 + .25 y^2 - z^2" )) variety(polys) # algebraic solution : c(sqrt(19)/2, 7/(2*sqrt(5)), 3/sqrt(5)) # +/- each ordinate # character vectors can be taken in; they're passed to mp variety(c("y - x^2", "y - x - 2")) # an example of how varieties are invariant to the # the generators of the ideal variety(c("2 x^2 + 3 y^2 - 11", "x^2 - y^2 - 3")) # variety(c("y^2 - 1", "x^2 - 4")) variety(c("x^2 - 4", "y^2 - 1")) # variable order is by default equal to vars(mpolyList) # (this finds the zeros of y = x^2 - 1) variety(c("y", "y - x^2 + 1")) # y, x vars(mp(c("y", "y - x^2 + 1"))) variety(c("y", "y - x^2 + 1"), c("x", "y")) # x, y # complex solutions variety("x^2 + 1") variety(c("x^2 + 1 + y", "y")) # multiplicities variety("x^2") variety(c("2 x^2 + 1 + y", "y + 1")) variety(c("x^3 - x^2 y", "y + 2")) # p <- mp(c("2 x - 2 - 3 x^2 l - 2 x l", "2 y - 2 + 2 l y", "y^2 - x^3 - x^2")) variety(p) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.