The IA-SVA based feature selection can significantly improve the performance and utility of clustering algorithms (e.g., tSNE, hierarchical clustering). To illustrate how the IA-SVA method can be used to improve the performance of clustering algorithms, we used real-world single cell RNA sequencing (scRNA-Seq) data obtained from human pancreatic islet samples (Lawlor et. al., 2016). This dataset is included in a R data package ("iasvaExamples") containing data examples for IA-SVA (https://github.com/dleelab/iasvaExamples). To install the 'iasvaExamples' package, follow the instruction provided in the GitHub page.

Load packages

rm(list=ls())
library(irlba)
library(iasva)
library(iasvaExamples)
library(Seurat)
library(dbscan)
library(Rtsne)
library(pheatmap)
library(corrplot)
library(DescTools) #pcc i.e., Pearson's contingency coefficient
library(RColorBrewer)
library(SummarizedExperiment)
color.vec <- brewer.pal(8, "Set1")
# Normalization.
normalize <- function (counts) 
{
    normfactor <- colSums(counts)
    return(t(t(counts)/normfactor)*median(normfactor))
}

Load the islet single cell RNA-Seq data

data("Lawlor_Islet_scRNAseq_Read_Counts")
data("Lawlor_Islet_scRNAseq_Annotations")
ls()
counts <- Lawlor_Islet_scRNAseq_Read_Counts
anns <- Lawlor_Islet_scRNAseq_Annotations
dim(anns)
dim(counts)

summary(anns)
ContCoef(table(anns$Gender, anns$Cell_Type))
ContCoef(table(anns$Phenotype, anns$Cell_Type))
ContCoef(table(anns$Race, anns$Cell_Type))
ContCoef(table(anns$Patient_ID, anns$Cell_Type))
ContCoef(table(anns$Batch, anns$Cell_Type))

The annotations describing the islet samples and experimental settings are stored in "anns" and the read counts information is stored in "counts".

Extract three cell types (GCG (alpha), INS (beta), KRT19 (ductal) expressing cells) from healthy (i.e., non-diabetic) subjects and filter out low-expressed genes

counts <- counts[, (anns$Phenotype!="Non-Diabetic")&
                    ((anns$Cell_Type=="GCG")|
                      (anns$Cell_Type=="INS")|
                        (anns$Cell_Type=="KRT19"))]
anns <- subset(anns, (Phenotype!="Non-Diabetic")& 
                      ((Cell_Type=="GCG")|
                        (Cell_Type=="INS")|
                          (Cell_Type=="KRT19")))
dim(counts)
dim(anns)
anns <- droplevels(anns)
prop.zeros <- sum(counts==0)/length(counts)
prop.zeros
filter = apply(counts, 1, function(x) length(x[x>5])>=3)
counts = counts[filter,]
dim(counts)
prop.zeros <- sum(counts==0)/length(counts)
prop.zeros
Patient_ID <- anns$Patient_ID
Cell_Type <- anns$Cell_Type
levels(Cell_Type) <- c("alpha", "beta", "ductal")
Batch <- anns$Batch
table(Cell_Type)
raw.counts <- counts
summary(colSums(counts))
counts <- normalize(counts)
summary(colSums(counts))

Calculate the number of detected genes

It is well known that the number of detected genes in each cell explains a very large portion of variability in scRNA-Seq data (Hicks et. al. 2015 BioRxiv, McDavid et. al. 2016 Nature Biotechnology). Frequently, the first principal component of log-transformed scRNA-Seq read counts is highly correlated with the number of detected genes (e.g., r > 0.9). Here, we calculate the number of detected genes for islet cells, which will be used as an known factor in the IA-SVA analyses.

Num_Detected_Genes <- colSums(counts>0)
Geo_Lib <- colSums(log(counts+1))
summary(Geo_Lib)
barplot(Geo_Lib, xlab="Cell", las=2, ylab = "Geometric Library Size")
lcounts <- log(counts + 1)
# PC1 and Geometric library size correlation
pc1 = irlba(lcounts - rowMeans(lcounts), 1)$v[,1] ## partial SVD
cor(Geo_Lib, pc1)

Run tSNE to cluster islet cells.

For comparison purposes, we applied tSNE on read counts of all genes. We used the Rtsne R package with default settings for this analyses. Genes are colored with respect to the expression of marker genes.

set.seed(32354388)
tsne.res <- Rtsne(t(lcounts), dims = 2)
plot(tsne.res$Y, main="tSNE", xlab="Dim1", ylab="Dim2", pch=21, 
     col=color.vec[Cell_Type], bg=color.vec[Cell_Type], oma=c(4,4,6,12))
legend("bottomright", levels(Cell_Type), border="white",fill=color.vec, bty="n")

Run IA-SVA

Here, we first run IA-SVA using Patient_ID, Batch and Geo_Lib_Size as known factors and identify 5 hidden factors. Since cell type is not used as a known factor in this analyses, IA-SVA will detect the heterogeneity associated with the cell types.

mod <- model.matrix(~Patient_ID+Batch+Geo_Lib)
summ_exp <- SummarizedExperiment(assays = counts)
iasva.res<- iasva(summ_exp, mod[,-1],verbose=FALSE, permute=FALSE, num.sv=5)
iasva.sv <- iasva.res$sv

#with color-coding based on true cell-type
pairs(iasva.sv, main="IA-SVA", pch=21, col=color.vec[Cell_Type],
      bg=color.vec[Cell_Type], oma=c(4,4,6,14))
legend("right", levels(Cell_Type), border="white", fill=color.vec, bty="n")
cor(Num_Detected_Genes, iasva.sv)
cor(Geo_Lib, iasva.sv)
corrplot(cor(iasva.sv))

Find marker genes for SV1 and SV3.

Here, using the find_markers() function we find marker genes significantly associated with SV1 and SV3 (multiple testing adjusted p-value < 0.05, default significance cutoff, a high R-squared value: R-squared > 0.4).

# try different R2 thresholds
pdf("Clustering_analyses_figure4_islets_sv1_3.pdf")
r2.results <- study_R2(summ_exp, iasva.sv,selected.svs=c(1,3), no.clusters=3)
dev.off()

marker.counts <- find_markers(summ_exp, as.matrix(iasva.sv[,c(1,3)])
                              , rsq.cutoff = 0.4)
nrow(marker.counts)
anno.col <- data.frame(Cell_Type=Cell_Type)
rownames(anno.col) <- colnames(marker.counts)
head(anno.col)

cell.type.col <- color.vec[1:3]
names(cell.type.col) <- c("alpha","beta","ductal")
anno.colors <- list(Cell_Type=cell.type.col)

pheatmap(log(marker.counts+1), show_colnames =FALSE, 
         clustering_method = "ward.D2", cutree_cols = 3, 
         annotation_col = anno.col, annotation_colors = anno.colors)

In the case of islet cells, marker genes are well established and IA-SVA did an excellent job of redefining these markers along with some other highly informative genes. Therefore, IA-SVA can be effectively used to uncover heterogeneity associated with cell types and can reveal genes that are expressed in a cell-specific manner.

Find marker genes for SV4.

Here, using the find_markers() function we find marker genes significantly associated with SV4 (multiple testing adjusted p-value < 0.05, default significance cutoff, a high R-squared value: R-squared > 0.3).

marker.counts.SV4 <- find_markers(summ_exp, as.matrix(iasva.sv[,c(4)]),
                                  rsq.cutoff = 0.3)
nrow(marker.counts.SV4)

anno.col <- data.frame(SV4=iasva.sv[,4])
rownames(anno.col) <- colnames(marker.counts)
head(anno.col)

pheatmap(log(marker.counts.SV4+1), show_colnames =FALSE, 
         clustering_method = "ward.D2", cutree_cols = 2,
         annotation_col = anno.col)

Run tSNE post IA-SVA, i.e., run tSNE on marker genes for SV1 and SV2 obtained from IA-SVA.

Here, we apply tSNE on the marker genes for SV1 and SV2

set.seed(344588)
tsne.res.iasva <- Rtsne(unique(t(log(marker.counts+1))), dims = 2)
plot(tsne.res.iasva$Y, main="IA-SVA + tSNE", xlab="Dimension 1",
     ylab="Dimension 2", pch=21, col=color.vec[Cell_Type],
     bg=color.vec[Cell_Type], oma=c(4,4,6,12))
legend("topright", levels(Cell_Type), border="white", fill=color.vec, bty="n")

tSNE conducted on genes selected via IA-SVA very clearly seperates cells into their corresponding cell types. Moreover, this analyses also revealed one cell (green cell clustered together with blue cells) that is potentially mislabeled in the original analyses.

Run CellView algorithm to visualize the data.

# specify gene number to select for
gene_num <- 1000
# calcuclate dispersion
row.var <- apply(lcounts,1,sd)**2
row.mean <- apply(lcounts,1,mean)
dispersion <- row.var/row.mean

# generate sequence of bins
bins <- seq(from = min(row.mean), to = max(row.mean), length.out = 20)

# sort mean expression data into the bins
bin.exp <- row.mean
# sort the values
bin.sort <- sort(bin.exp, decreasing = FALSE)
# vector of bin assignment
cuts <- cut(x = bin.exp, breaks = bins, labels = FALSE)
# find which are NA and change to zero
na.ids <- which(is.na(cuts) == TRUE)
cuts[na.ids] <- 0

# create an empty vector for overdispersion
overdispersion <- NULL

# for each gene and bin index, calculate median, mad, and then normalized dispersion
# first loop through length of bins found
for (k in 1:length(names(table(cuts)))) {
  # find index of bins
  bin.id <- which(cuts == names(table(cuts))[k])
  # median of all genes in the bin
  median.bin <- median(dispersion[bin.id], na.rm = TRUE)
  # calculate mad (median absolute deviation)
  mad.bin <- mad(dispersion[bin.id])
  # calculate norm dispersion for each gene
  for (m in 1:length(bin.id)) {
    norm.dispersion <- abs(dispersion[bin.id[m]] - median.bin)/mad.bin
    overdispersion <- c(overdispersion, norm.dispersion) 
  }
}

# remove nans 
overdis.na <- which(is.na(overdispersion) == TRUE)
if (length(overdis.na) > 0) {
  overdis.filt <- overdispersion[-overdis.na]
} else {
  overdis.filt <- overdispersion
}

# plot mean expression vs overdisperssion
ids <- which(names(overdis.filt) %in% names(row.mean))
plot(row.mean[ids], overdis.filt)

# Do t-sne using top over-dispersed genes (apply mean expression filter too)
rank.ov <- order(overdis.filt, decreasing = TRUE)
ov.genes <- names(overdis.filt[rank.ov[1:gene_num]])
log.sel <- lcounts[ov.genes,]

all1 <- t(log.sel)
# Remove groups that are all zeros
df <- all1[,apply(all1, 2, var, na.rm=TRUE) != 0]

set.seed(34544532)
rtsne_out <- Rtsne(as.matrix(df), dims = 3)

# Set rownames of matrix to tsne matrix
rownames(rtsne_out$Y) <- rownames(df)

tsne.cellview <- rtsne_out$Y

plot(tsne.cellview[,c(1,2)], main="CellView", xlab="Dimension 1", 
     ylab="Dimension 2",pch=21, col=color.vec[Cell_Type], 
     bg=color.vec[Cell_Type], oma=c(4,4,6,12))
legend("topright", levels(Cell_Type), border="white", fill=color.vec, bty="n")

Run Seurat to reduce dimensionality and visualize islet cells

set.seed(12344)
seurat.obj <- CreateSeuratObject(raw.data=raw.counts, 
                                 min.cells=3, min.genes=200, project="Seurat_Comp")

names(Patient_ID) <- rownames(seurat.obj@meta.data)
seurat.obj <- AddMetaData(object = seurat.obj, 
                          metadata = Patient_ID, col.name = "patient.id")
names(Batch) <- rownames(seurat.obj@meta.data)
seurat.obj <- AddMetaData(object = seurat.obj, 
                          metadata = Batch, col.name = "batch")
names(Geo_Lib) <- rownames(seurat.obj@meta.data)
seurat.obj <- AddMetaData(object = seurat.obj, 
                          metadata = Geo_Lib, col.name = "geo.lib")

# Normalizing the data
seurat.obj <- NormalizeData(object = seurat.obj,
                            normalization.method = "LogNormalize", 
                            scale.factor = median(colSums(raw.counts)))

# Detection of variable genes across the single cells
seurat.obj <- FindVariableGenes(object = seurat.obj, 
                                mean.function = ExpMean, dispersion.function = LogVMR, 
    x.low.cutoff = 0.0125, x.high.cutoff = 3, y.cutoff = 0.5)
length(x = seurat.obj@var.genes)

# Scaling the data and removing unwanted sources of variation
seurat.obj <- ScaleData(object = seurat.obj, 
                        vars.to.regress = c("patient.id", "batch", "geo.lib"))

# Perform linear dimensional reduction
seurat.obj <- RunPCA(object = seurat.obj, 
                     pc.genes = seurat.obj@var.genes, 
                     do.print = TRUE, pcs.print = 1:5, 
                     genes.print = 5)

# Run tSNE (Spectral tSNE)
set.seed(8883)
seurat.obj <- RunTSNE(object = seurat.obj, dims.use = 1:5, do.fast = TRUE)

# tSNE plot with color-coding of true cell types
plot(seurat.obj@dr$tsne@cell.embeddings[,c(1,2)], 
     main="Spectral tSNE (Seurat)", xlab="Dimension 1",
     ylab="Dimension 2",pch=21, col=color.vec[Cell_Type], 
     bg=color.vec[Cell_Type], oma=c(4,4,6,12))
legend("topleft", levels(Cell_Type), border="white", fill=color.vec, bty="n")
pdf(file="Lawlor_Islets_3Cells_tSNE_IA-SVA_Fig4AB.pdf", width=9, height=5)
layout(matrix(c(1,2), nrow=1, ncol=2, byrow=TRUE))
plot(tsne.res$Y, main="tSNE", xlab="Dimension 1", 
     ylab="Dimension 2", pch=21, col=color.vec[Cell_Type],
     bg=color.vec[Cell_Type])
legend("topleft", levels(Cell_Type), border="white",
       fill=color.vec, bty="n")
plot(tsne.res.iasva$Y, main="IA-SVA + tSNE", xlab="Dimension 1", 
     ylab="Dimension 2", pch=21, col=color.vec[Cell_Type], 
     bg=color.vec[Cell_Type])
legend("topright", levels(Cell_Type), border="white", 
       fill=color.vec, bty="n")
dev.off()
anno.col <- data.frame(Cell_Type=Cell_Type)
rownames(anno.col) <- colnames(marker.counts)
head(anno.col)

cell.type.col <- color.vec[1:3]
names(cell.type.col) <- c("alpha","beta","ductal")
anno.colors <- list(Cell_Type=cell.type.col)

pheatmap(log(marker.counts+1), show_colnames =FALSE, 
         clustering_method = "ward.D2", cutree_cols = 3, 
         annotation_col = anno.col, annotation_colors = anno.colors,
         filename="Lawlor_Islets_3Cells_IASVA_SV1SV3_rsqcutoff0.3_pheatmap_iasvaV0.95_Figure4_C.pdf",
         width=6, height=17)
pdf(file="Lawlor_Islets_3Cells_IASVA_pairs4SVs_iasvaV0.95_black_FigS6.pdf",
    width=4, height=4)
pairs(iasva.sv[,1:4], pch=21, col="black", bg="black")
dev.off()

pdf(file="Lawlor_Islets_3Cells_IASVA_pairs4SVs_iasvaV0.95_color_FigS6.pdf", 
    width=4, height=4)
pairs(iasva.sv[,1:4], pch=21, col=color.vec[Cell_Type], 
      bg=color.vec[Cell_Type])
dev.off()
## 1,2
pdf(file="Lawlor_Islets_3Cells_CellView_Seurat_FigS.pdf", width=9, height=5)
layout(matrix(c(1,2), nrow=1, ncol=2, byrow=TRUE))
plot(tsne.cellview[,c(1,2)], main="CellView", xlab="Dimension 1",
     ylab="Dimension 2",pch=21, col=color.vec[Cell_Type],
     bg=color.vec[Cell_Type], oma=c(4,4,6,12))
legend("topright", levels(Cell_Type), border="white",
       fill=color.vec, bty="n")
plot(seurat.obj@dr$tsne@cell.embeddings[,c(1,2)], 
     main="Spectral tSNE (Seurat)", xlab="Dimension 1", 
     ylab="Dimension 2",pch=21, col=color.vec[Cell_Type], 
     bg=color.vec[Cell_Type], oma=c(4,4,6,12))
legend("topleft", levels(Cell_Type), border="white", 
       fill=color.vec, bty="n")
dev.off()
write.table(as.data.frame(rownames(marker.counts)), 
            file="Lawlor_Islets_3Cells_SV1_SV3_Cell_Type_Genes_rsqcutoff0.3.txt",
            quote=F, row.names=F, col.names=F, sep=" ")
write.table(as.data.frame(rownames(marker.counts.SV4)), 
            file="Lawlor_Islets_3Cells_SV4_Genes_rsqcutoff0.3.txt", quote=F,
            row.names=F, col.names=F, sep=" ")

anno.col <- data.frame(SV4=iasva.sv[,4])
rownames(anno.col) <- colnames(marker.counts)
head(anno.col)

pheatmap(log(marker.counts.SV4+1), show_colnames =FALSE, 
         clustering_method = "ward.D2", cutree_cols = 2, 
         annotation_col = anno.col,
         filename="Lawlor_Islets_3Cells_IASVA_SV4_rsqcutoff0.3_pheatmap_iasvaV0.95.pdf",
         width=8, height=14)

Session Info

sessionInfo()


dleelab/iasvaExamples documentation built on Aug. 16, 2022, 4:21 a.m.