knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
The R package visae
implements 'shiny' apps to visualize adverse events (AE) based on the Common Terminology Criteria for Adverse Events (CTCAE).
instal.packages("visae")
The latest version can be installed from GitHub as follows:
devtools::install_github("dnzmarcio/visae")
patient_id <- 1:4000 group <- c(rep("A", 1000), rep("B", 1000), rep("C", 1000), rep("D", 1000)) ae_grade <- c(rep("AE class 01", 600), rep("AE class 02", 300), rep("AE class 03", 100), rep("AE class 04", 0), rep("AE class 01", 100), rep("AE class 02", 400), rep("AE class 03", 400), rep("AE class 04", 100), rep("AE class 01", 233), rep("AE class 02", 267), rep("AE class 03", 267), rep("AE class 04", 233), rep("AE class 01", 0), rep("AE class 02", 100), rep("AE class 03", 300), rep("AE class 04", 600)) dt <- tibble(patient_id = patient_id, trt = group, ae_g = ae_grade)
library(visae) library(magrittr) library(dplyr) dt %>% run_ca(., group = trt, id = patient_id, ae_grade = ae_g)
ca <- dt %>% ca_ae(., group = trt, id = patient_id, ae_class = ae_g, contr_indicator = FALSE, mass_indicator = TRUE, contr_threshold = 0, mass_threshold = 0) ca$asymmetric_plot
Investigators often interpret CA biplots erroneously assuming that the distance between AE classes dots and treatments dots is an indicative of association. See below step by step how to interpret biplots correctly:
knitr::include_graphics("figures/fig1.png")
knitr::include_graphics("figures/fig2.png")
knitr::include_graphics("figures/fig3.png")
knitr::include_graphics("figures/fig4.png")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.