Description Usage Arguments Value Note Examples
Compute KL divergence for a multivariate normal distribution.
1 |
true |
Matrix. The true precision matrix (inverse of the covariance matrix) |
estimate |
Matrix. The estimated precision matrix (inverse of the covariance matrix) |
stein |
Logical. Should Stein's loss be computed
(defaults to |
Numeric corresponding to KL divergence.
A lower value is better, with a score of zero indicating that the estimated precision matrix is identical to the true precision matrix.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | # nodes
p <- 20
main <- gen_net(p = p, edge_prob = 0.15)
y <- MASS::mvrnorm(250, rep(0, p), main$cors)
fit_l1 <- ggmncv(R = cor(y),
n = nrow(y),
penalty = "lasso",
progress = FALSE)
# lasso
kl_mvn(fit_l1$Theta, solve(main$cors))
fit_atan <- ggmncv(R = cor(y),
n = nrow(y),
penalty = "atan",
progress = FALSE)
kl_mvn(fit_atan$Theta, solve(main$cors))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.