#' Bacteria Shell Harvest Analysis
#'
#' Assesses Ecoli data against the standard
#' @param df dataframe with Ecoli data
#' @param criteria POSIXCT column name containing criteria values
#' @return a dataframe with relevant Ecoli criteria and excursion variables added
#' @export
#' @examples function(df = your_ecoli_data, criteria = "bact-shell-crit")
Shell_Harvest <- function(df, per_criteria = "bact_crit_percent", ss_criteria = "bact_crit_ss") {
print("Begin shellfish harvesting analysis")
Perc_Crit <- as.symbol(per_criteria)
SS_Crit <- as.symbol(ss_criteria)
shell_harvest <- df %>%
dplyr::filter(BacteriaCode == 3,
Char_Name == "Fecal Coliform") %>%
dplyr::mutate(perc_exceed = ifelse(Result_cen > !!Perc_Crit, 1, 0),
ss_excursion = ifelse(Result_cen > !!SS_Crit, 1, 0))
# if(nrow(shell_harvest) == 0) {
# stop("No available data")
# }
return(shell_harvest)
# shell_harvest_analysis <- shell_harvest %>%
# group_by(MLocID, OWRD_Basin) %>%
# summarise(num_samples = n(),
# median = ifelse(num_samples >= 5, median(Result_cen), NA ),
# num_exceed = sum(perc_exceed),
# Perc_Crit = first(!!Perc_Crit),
# SS_Crit = first(SS_Crit)
# )
#
# return(shell_harvest_analysis)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.